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The content of the slides taken from article
”Queue-number of graphs with bounded tree-width”

by Veit Wiechert[1].
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Overview

1 Basic definitions

2 Upper bound for queue-number

3 Lower bounds for queue-number
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Queue/stack layouts

Queue layout:
Linear order of the vertices.

Assignment of the edges to queues, such that no two edges in a single
queue are nested.

Stack layout:
Linear order of the vertices.

Assignment of the edges to stacks, such that no two edges in a single
stack cross.
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Examples

A B

C

A B C

Queue-number: 1
Stack-number: 1
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Examples

A B

CD

A B C D

Queue-number: 2
Stack-number: 2
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Examples

A B C D E F

Queue-number: 2
Stack-number: 1
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Examples

A B C D E F

Queue-number: 1
Stack-number: 2
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k-rainbow approach

A B C D E F G H

1

2

3

4
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Tree-decomposition

G = (V ,E )

tree-decomposition of G is a pair (T , {Tx}x∈V ),
tree T and a family of non-empty subtrees of T ,
∀xy∈EV (Tx) ∩ V (Ty ) 6= ∅,
each node u ∈ V (T ) induces a bag {x ∈ V : u ∈ Tx}.
width of the tree-decomposition:

maximum size of a bag − 1,

tree-width of G is the minimum width of a tree-decomposition of G
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Tree-partition

G = (V ,E )

tree-partition of G is a pair (T , {Tx : x ∈ V (T )}):

tree (forest) T ,
partition of V into sets {Tx : x ∈ V (T )}, such that:

∀uv∈V

(
∃!x∈V (T )u, v ∈ Tx Y ∃!xy∈E(T )u ∈ Tx ∧ v ∈ Ty

)
,

Tx is a bag of the tree-partition.
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Tree-partition

A

B
C

D E

F

G

H I J K L M

T

x0

x1 x2

x3 x4 x5 x6

Figure: Tree-partition
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k-tree

k-tree definition:

empty graph is a k-tree,

each graph obtained by adding a vertex v to a k-tree so that the
adjacent vertices of v form a clique of size at most k is also a k-tree,
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Upper bound for queue-number

Theorem 1 (Upper bound for queue-number)

Let k ≥ 0. For all graphs G with tree-width at most k ,

qn(G ) ≤ 2k − 1.

Marcin Muszalski (UJ) On the queue-number... November 8, 2018 14 / 33



Upper bound for queue-number

Lemma 2 ([Vida Dujmovi’c, Pat Morin, and David R. Wood.])

Let G be a k-tree. Then there is a rooted tree-partition
(T , {Tx : x ∈ V (T )}) of G such that:

for each node x of T , the induced subgraph G [Tx ] is a connected
(k − 1)-tree,

for each nonroot node x ∈ T , if y ∈ T is the parent node of x in T
then the vertices in Ty with a neighbor in Tx form a clique.

Theorem 3

Let k ≥ 0. For each k-tree G , there is a queue layout using at most
tk = 2k − 1 queues, such that for each v ∈ V (G ), edges with v as their
right endpoint in the layout are assigned to pairwise different queues.
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Proof of theorem 3

Induction by k. For k = 0:

the graph G has no edges - it requires 0 queues.

For k ≥ 1:

G is a connected∗ k-tree.

Let (T , {Tx : x ∈ V (T )}) be a tree-partition of G with r as root of
T [lemma 2].

For each node∗ calculate a depth (distance to r in T ).

Construct a linear order LG for the queue layout of G and then assign
the edges to queues.
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Proof of theorem 3 - How to construct LG?

Intuition on build LG :

BFS-like procedure (by depth).

Dynamically construct order for each depth and append it to the right
of the one already produced. To do so:

Specify a linear order LTd of the nodes at depth d in T .
Replace each node x in LTd by the linear order of the layout obtained by
applying induction to the (k − 1)-tree G [Tx ].

Marcin Muszalski (UJ) On the queue-number... November 8, 2018 17 / 33



Proof of theorem 3 - How to construct LG?

At depth 0:

Only one node in LT0 .

Induction on the (k − 1)-tree G [Tr ] to obtain LG0 .

At depth d we have LGd−1, LTd−1. How to construct LTd ?

Order the nodes according to their parent nodes (lex-BFS ordering):

x < y in LTd ⇐⇒ parent(x) < parent(y) in LTd−1.

What if parent(x) = parent(y)?

Marcin Muszalski (UJ) On the queue-number... November 8, 2018 18 / 33



Proof of theorem 3 - How to construct LG?

At depth 0:

Only one node in LT0 .

Induction on the (k − 1)-tree G [Tr ] to obtain LG0 .

At depth d we have LGd−1, LTd−1. How to construct LTd ?

Order the nodes according to their parent nodes (lex-BFS ordering):

x < y in LTd ⇐⇒ parent(x) < parent(y) in LTd−1.

What if parent(x) = parent(y)?

Marcin Muszalski (UJ) On the queue-number... November 8, 2018 18 / 33



Proof of theorem 3 - How to construct LG?

At depth 0:

Only one node in LT0 .

Induction on the (k − 1)-tree G [Tr ] to obtain LG0 .

At depth d we have LGd−1, LTd−1. How to construct LTd ?

Order the nodes according to their parent nodes (lex-BFS ordering):

x < y in LTd ⇐⇒ parent(x) < parent(y) in LTd−1.

What if parent(x) = parent(y)?

Marcin Muszalski (UJ) On the queue-number... November 8, 2018 18 / 33



Proof of theorem 3 - How to construct LTd ?

Suppose that x1, . . . , xl have the same parent y at depth d − 1.

Consider the cliques Cx1 , . . .Cx2 in Ty .

For each i ∈ {1, . . . , l} let cxi be a rightmost vertex of Cxi .

Order x1, . . . , xl according to the positions of cx1 , . . . , cxl .

What about nodes for which cxi = cxj ?

Order them arbitrarily so that LTd becomes a linear order of nodes at
depth d ...
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Proof of theorem 3 - How to construct LTd ?

E.g. ordered vertices at depth at most 1 from figure 1.

A B C D E F G

x0 x1 x2
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Proof of theorem 3 - How to construct LG?

By lemma 2, the bag of each node x in the tree-partition induces a
(k − 1)-tree, which allows us to apply induction.

Let Lx be the linear order of the queue layout obtained in this way.

Replace each node x in LTd by the linear order Lx .

Put the resulting order of vertices at depth d to the right of LGd−1,

which yields a linear order LGd of all vertices at depth at most d .

Iterate this construction until we reach the maximum depth.

Let LG be order obtained by above procedure and LT order of all the
nodes of T .
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Proof of theorem 3 - LT

LT has the following properties. For nodes x , y ∈ V (T ):

d(x) < d(y) in T =⇒ x < y in LT (1)

parent(x) < parent(y) in LT =⇒ x < y in LT (2)

Property (1) asserts that LT is a BFS ordering, and combined with
property (2) we have that LT is a Lex-BFS ordering.

No two edges of T are nested in LT .

If two interbag edges uv and u′v ′ are nested in LG then u and u′ are
in the same bag of the tree-partition.
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Proof of theorem 3 - coloring

First we will color the edges with colors from {1, . . . , 2tk−1 + 1} and then
show that each color induces a queue with respect to LG .

Intrabag edges:

For each bag Tx color the contained edges according to the queue
assignment that is given by the induction hypothesis for the
(k − 1)-tree G [Tx ]

We use the colors 1, . . . , tk−1 for this coloring. Colors are reused.

Interbag edges, let uv ∈ E (G ) (d(u) < d(v)):

there is a node x in T such that v ∈ Tx and u ∈ Tp(x),

if u = cx , then we color uv with 2tk−1 + 1,

otherwise we color uv with i + tk−1 where i ∈ {1, . . . , tk−1} is the
color of the intrabag edge ucx .
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Proof of theorem 3 - queues

Claim. For each color c ∈ {1, . . . , 2tk−1 + 1}, the edges of G colored c
form a queue with respect to LG .

Proof by contradiction.

Let uv , u′v ′ be edges with color c that are nested in LG and
u < u′ < v ′ < v .

If c ∈ {1, . . . , tk−1} then the edges are intrabag edges,

if they lie within the same bag, then they cannot be nested (valid
queue layout from the induction hypothesis),
if they lie in different bags, then both endpoints of one edge lie before
both endpoints of the other edge in LG , a contradiction.
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Proof of theorem 3 - queues

c ≥ tk−1 + 1, then uv , u′v ′ are interbag edges.

By property (1) and (2) it follows that u and u′ both are contained in
the same bag. Let Ty be this bag and x , x ′ ∈ V (T ) be such that
v ∈ Tx and v ′ ∈ Tx′ (u ∈ Cx and u′ ∈ Cx′)

c = 2tk−1 + 1

u and u′ are rightmost in LG among vertices of Cx and Cx ′ .

u = cx and u′ = cx ′ , so x 6= x ′,

since x and x ′ share the parent y , they are ordered in LT according to
the positions of cx , cx ′ in LG ,

cx = u < u′ = cx ′ in LG , this implies x < x ′ in LT ,

vertices of Tx lie before vertices of tx ′ in LG , a contradiction to our
assumption v ′ < v in LG .
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Proof of theorem 3 - queues

c ∈ {tk−1 + 1, . . . , 2tk−1}
Let i ∈ {1, . . . , tk−1} be such that c = i + tk−1.

u 6= cx and u′ 6= cx ′ , since u ∈ Cx and u′ ∈ Cx ′ , u < cx and u′ < cx ′

in LG .

Edges ucx and u′cx ′ are colored with i . This implies cx 6= cx ′ .

By assumption that v ′ < v in LG we conclude x ′ < x in LT .

By the fact that x and x ′ are ordered in LT according to the position
of cx and cx ′ in LG we know that cx < cx ′ in LG .

cx ′ is the rightmost vertex of Cx ′ in LG , so u < u′ < cx ′ < cx in LG .
ucx and u′cx ′ are nested and have the same color i .

This is a contradiction to the fact that we colored these edges
according to the queue layout obtained by the induction hypothesis.

�
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Proof of theorem 3

To complete induction step we need to show that for each v ∈ V (G ) no
two edges with v as their right endpoint are colored with the same color.
By contradiction, uv , u′v have the same color c and u < v , u′ < v in LG .

By the induction hypothesis c ∈ {tk−1, . . . , 2tk−1 + 1}
Let v be a node and v ∈ Tx . Then u, u′ ∈ Cx

Since cx is the unique vertex of Cx that is connected by an edge in
color 2tk−1 + 1 to v , so c 6= 2tk−1 + 1

Our coloring rule for uv , u′v implies that ucx , u′cx are colored with
c − tk−1 ∈ {1, . . . , tk−1}
As cx is the rightmost vertex of Cx , we obtain that the intrabag edges
ucx and u′cx have the same color and the same right endpoint in LG ,
which is a contradiction to the induction hypothesis.

We use 2tk−1 + 1 = 2(2k−1 − 1) + 1 = 2k − 1 queues in our layout of G ,
this completes the proof of the theorem.

�
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Lower bounds for queue-number

Theorem 4 (Lower bounds)

For each k ≥ 2, there is a k-tree with queue-number at least k + 1.
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k-queue game

Game between Alice and Bob on k-trees (k ≥ 2), in which Bob has to
build a queue-layout of the k-tree to be presented by Alice.

Game starts with a (k + 1)-clique and an arbitrary linear order of the
vertices of this clique.

Each round of the game consists of two moves:

Alice introduces a new vertex v and chooses a k-clique of the current
graph to which v becomes adjacent.
Bob specifies the position in the current layout where v is inserted.

Alice wins the k-queue game if Bob creates a rainbow of size k + 1 in
the layout.
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k-queue game

Lemma 5

For each k ≥ 1, there is an integer dk such that Alice has a strategy to
win the k-queue game within at most dk rounds.

Graph G , clique C in G . We stack on C in H by introducing a new vertex
vC and by making vC adjacent to the vertices of C .
If a graph H ′ is obtained by simultaneously stacking on each k-clique of
H, then we call H ′ the k-stack of H.
(Gi )i∈N is a family of k-trees.

Let G0 be a (k + 1)-clique,

Gi is a k-stack of Gi−1

Gi contains an intrinsic copy G
′
i−1 of Gi−1 as an induced subgraph,

which is such that Gi can be obtained by taking the k-stack of G
′
i−1.
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k-queue game

Lemma 6

Given k ≥ 2, let dk be as in the statement of lemma 5.
Then the queue-number of the k-tree Gdk is at least k + 1.

Lemma 6 implies Theorem 4.

Proof. Consider variant of the k-queue game.

Alice’s move in a round of the variant consists of simultaneously
stacking on each possible k-clique.

Bob’s task in this round to insert all the newly introduced vertices in
the current layout.

Lemma 5 holds for this variant.
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k-queue game

By contradiction, linear order L of the vertices of Gdk such that there is no
rainbow of size k + 1.
We claim that Bob can use L as an instruction to avoid rainbows of size
k + 1 during the first dk rounds in the variant of the k-queue game.

After i rounds, the graph built by Alice is isomorphic to Gi .

Bob has to fix induced subgraphs H0, . . . ,Hdk of Gdk such that
Hdk = Gdk and such that Hi−1 is the intrinsic copy of Gi−1 in Hi for
each i ∈ {1, . . . , dk}.
L|V (Hi ) is an extension of L|V (Hi−1) for each i ∈ {1, . . . , dk}.
Bob can ensure that the linear order after i rounds is equal to L|V (Hi ).

Applying this strategy, the linear order built after dk rounds is equal
to L.

As L does not contain a rainbow of size k + 1 Bob wins.
This is a contradiction to lemma 5. �
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