Queue-number of graphs with bounded tree-width Veit Wiechert

Marcin Muszalski

Uniwersytet Jagielloński

November 8, 2018

Marcin Muszalski (UJ)

On the queue-number...

November 8, 2018 1 / 33

The content of the slides taken from article "Queue-number of graphs with bounded tree-width" by Veit Wiechert[1].

2 Upper bound for queue-number

• Linear order of the vertices.

- Linear order of the vertices.
- Assignment of the edges to queues, such that no two edges in a single queue are nested.

- Linear order of the vertices.
- Assignment of the edges to queues, such that no two edges in a single queue are nested.

Stack layout:

• Linear order of the vertices.

- Linear order of the vertices.
- Assignment of the edges to queues, such that no two edges in a single queue are nested.

Stack layout:

- Linear order of the vertices.
- Assignment of the edges to stacks, such that no two edges in a single stack cross.

< 67 ▶

Queue-number: 1 Stack-number: 1

Marcin Muszalski (UJ)

On the queue-number...

November 8, 2018 5 / 33

Queue-number: 2 Stack-number: 2

< 67 ▶

Queue-number: 2 Stack-number: 1

Queue-number: 1 Stack-number: 2

Marcin Muszalski (UJ)

On the queue-number...

November 8, 2018 8 / 33

Image: A matrix

k-rainbow approach

• • • • • • • •

æ

Tree-decomposition

• G = (V, E)

Image: A matrix

æ

- G = (V, E)
- tree-decomposition of G is a pair (T, {T_x}_{x∈V}), tree T and a family of non-empty subtrees of T,

• tree-decomposition of G is a pair $(T, \{T_x\}_{x \in V})$, tree T and a family of non-empty subtrees of T, $\forall_{xy \in E} V(T_x) \cap V(T_y) \neq \emptyset$,

 tree-decomposition of G is a pair (T, {T_x}_{x∈V}), tree T and a family of non-empty subtrees of T, ∀_{xy∈E}V(T_x) ∩ V(T_y) ≠ Ø, each node u ∈ V(T) induces a bag {x ∈ V : u ∈ T_x}.

- tree-decomposition of G is a pair (T, {T_x}_{x∈V}), tree T and a family of non-empty subtrees of T, ∀_{xy∈E}V(T_x) ∩ V(T_y) ≠ Ø, each node u ∈ V(T) induces a bag {x ∈ V : u ∈ T_x}.
- width of the tree-decomposition:

maximum size of a bag -1,

- tree-decomposition of G is a pair (T, {T_x}_{x∈V}), tree T and a family of non-empty subtrees of T, ∀_{xy∈E}V(T_x) ∩ V(T_y) ≠ Ø, each node u ∈ V(T) induces a bag {x ∈ V : u ∈ T_x}.
- width of the tree-decomposition:

maximum size of a bag -1,

• tree-width of G is the minimum width of a tree-decomposition of G

- G = (V, E)
- tree-partition of G is a pair $(T, \{T_x : x \in V(T)\})$:
 - tree (forest) T,
 - partition of V into sets $\{T_x : x \in V(T)\}$, such that:

$$\forall_{uv\in V} \left(\exists !_{x\in V(T)} u, v \in T_x \ \forall \ \exists !_{xy\in E(T)} u \in T_x \land v \in T_y \right),$$

• T_x is a bag of the tree-partition.

Figure: Tree-partition

k-tree definition:

∃ ► < ∃ ►</p>

• • • • • • • •

æ

k-tree definition:

• empty graph is a k-tree,

Image: Image:

æ

k-tree definition:

- empty graph is a k-tree,
- each graph obtained by adding a vertex v to a k-tree so that the adjacent vertices of v form a clique of size at most k is also a k-tree,

Theorem 1 (Upper bound for queue-number)

Let $k \ge 0$. For all graphs G with tree-width at most k,

$$qn(G)\leq 2^k-1.$$

Lemma 2 ([Vida Dujmovi'c, Pat Morin, and David R. Wood.])

Let G be a k-tree. Then there is a rooted tree-partition $(T, \{T_x : x \in V(T)\})$ of G such that:

- for each node x of T, the induced subgraph G[T_x] is a connected (k − 1)-tree,
- for each nonroot node x ∈ T, if y ∈ T is the parent node of x in T then the vertices in T_y with a neighbor in T_x form a clique.

Lemma 2 ([Vida Dujmovi'c, Pat Morin, and David R. Wood.])

Let G be a k-tree. Then there is a rooted tree-partition $(T, \{T_x : x \in V(T)\})$ of G such that:

- for each node x of T, the induced subgraph $G[T_x]$ is a connected (k-1)-tree,
- for each nonroot node x ∈ T, if y ∈ T is the parent node of x in T then the vertices in T_y with a neighbor in T_x form a clique.

Theorem 3

Let $k \ge 0$. For each k-tree G, there is a queue layout using at most $t_k = 2^k - 1$ queues, such that for each $v \in V(G)$, edges with v as their right endpoint in the layout are assigned to pairwise different queues.

イロト 不得下 イヨト イヨト 二日

Induction by k. For k = 0:

• the graph G has no edges - it requires 0 queues.

Induction by k. For k = 0:

• the graph G has no edges - it requires 0 queues.

For $k \geq 1$:

- G is a connected* k-tree.
- Let (T, {T_x : x ∈ V(T)}) be a tree-partition of G with r as root of T [lemma 2].
- For each node^{*} calculate a *depth* (distance to *r* in *T*).
- Construct a linear order *L^G* for the queue layout of *G* and then assign the edges to queues.

Intuition on build L^G :

- *BFS*-like procedure (by depth).
- Dynamically construct order for each depth and append it to the right of the one already produced. To do so:
 - Specify a linear order L_d^T of the nodes at depth d in T.
 - Replace each node x in L_d^T by the linear order of the layout obtained by applying induction to the (k 1)-tree $G[T_x]$.

At depth 0:

- Only one node in L_0^T .
- Induction on the (k-1)-tree $G[T_r]$ to obtain L_0^G .

At depth 0:

- Only one node in L_0^T .
- Induction on the (k-1)-tree $G[T_r]$ to obtain L_0^G .

At depth d we have L_{d-1}^G , L_{d-1}^T . How to construct L_d^T ?

• Order the nodes according to their parent nodes (lex-BFS ordering):

•
$$x < y$$
 in $L_d^T \iff parent(x) < parent(y)$ in L_{d-1}^T .

At depth 0:

- Only one node in L_0^T .
- Induction on the (k-1)-tree $G[T_r]$ to obtain L_0^G .

At depth d we have L_{d-1}^G , L_{d-1}^T . How to construct L_d^T ?

• Order the nodes according to their parent nodes (lex-BFS ordering):

•
$$x < y$$
 in $L_d^T \iff parent(x) < parent(y)$ in L_{d-1}^T .

What if parent(x) = parent(y)?

Suppose that x_1, \ldots, x_l have the same parent y at depth d - 1.

- Consider the cliques C_{x_1}, \ldots, C_{x_2} in T_y .
- For each $i \in \{1, \ldots, l\}$ let c_{x_i} be a rightmost vertex of C_{x_i} .
- Order x_1, \ldots, x_l according to the positions of c_{x_1}, \ldots, c_{x_l} .

Suppose that x_1, \ldots, x_l have the same parent y at depth d - 1.

- Consider the cliques C_{x_1}, \ldots, C_{x_2} in T_y .
- For each $i \in \{1, \ldots, l\}$ let c_{x_i} be a rightmost vertex of C_{x_i} .
- Order x_1, \ldots, x_l according to the positions of c_{x_1}, \ldots, c_{x_l} .

What about nodes for which $c_{x_i} = c_{x_j}$?

• Order them arbitrarily so that L_d^T becomes a linear order of nodes at depth d...

Proof of theorem 3 - How to construct L_d^T ?

E.g. ordered vertices at depth at most 1 from figure 1.

By lemma 2, the bag of each node x in the tree-partition induces a (k-1)-tree, which allows us to apply induction.

Let L_x be the linear order of the queue layout obtained in this way.

- Replace each node x in L_d^T by the linear order L_x .
- Put the resulting order of vertices at depth d to the right of L^G_{d-1}, which yields a linear order L^G_d of all vertices at depth at most d.
- Iterate this construction until we reach the maximum depth. Let L^G be order obtained by above procedure and L^T order of all the nodes of T.

 L^T has the following properties. For nodes $x, y \in V(T)$:

$$d(x) < d(y) \text{ in } T \implies x < y \text{ in } L^T$$
(1)

$$parent(x) < parent(y) \text{ in } L^T \implies x < y \text{ in } L^T$$
 (2)

Property (1) asserts that L^T is a BFS ordering, and combined with property (2) we have that L^T is a Lex-BFS ordering.

- No two edges of T are nested in L^T .
- If two interbag edges *uv* and *u'v'* are nested in *L^G* then *u* and *u'* are in the same bag of the tree-partition.

First we will color the edges with colors from $\{1, \ldots, 2t_{k-1} + 1\}$ and then show that each color induces a queue with respect to L^G .

Intrabag edges:

- For each bag T_x color the contained edges according to the queue assignment that is given by the induction hypothesis for the (k-1)-tree $G[T_x]$
- We use the colors $1, \ldots, t_{k-1}$ for this coloring. Colors are reused.

First we will color the edges with colors from $\{1, \ldots, 2t_{k-1} + 1\}$ and then show that each color induces a queue with respect to L^G .

Intrabag edges:

• For each bag T_x color the contained edges according to the queue assignment that is given by the induction hypothesis for the (k-1)-tree $G[T_x]$

• We use the colors $1, \ldots, t_{k-1}$ for this coloring. Colors are reused. Interbag edges, let $uv \in E(G)$ (d(u) < d(v)):

- there is a node x in T such that $v \in T_x$ and $u \in T_{p(x)}$,
- if $u = c_x$, then we color uv with $2t_{k-1} + 1$,
- otherwise we color uv with $i + t_{k-1}$ where $i \in \{1, \ldots, t_{k-1}\}$ is the color of the intrabag edge uc_x .

Claim. For each color $c \in \{1, ..., 2t_{k-1} + 1\}$, the edges of G colored c form a queue with respect to L^G .

Proof by contradiction.

- Let uv, u'v' be edges with color c that are nested in L^G and u < u' < v' < v.
- If $c \in \{1, \ldots, t_{k-1}\}$ then the edges are intrabag edges,
 - if they lie within the same bag, then they cannot be nested (valid queue layout from the induction hypothesis),
 - if they lie in different bags, then both endpoints of one edge lie before both endpoints of the other edge in L^G , a contradiction.

Proof of theorem 3 - queues

- $c \ge t_{k-1} + 1$, then uv, u'v' are interbag edges.
 - By property (1) and (2) it follows that u and u' both are contained in the same bag. Let T_y be this bag and x, x' ∈ V(T) be such that v ∈ T_x and v' ∈ T_{x'} (u ∈ C_x and u' ∈ C_{x'})

- $c \ge t_{k-1} + 1$, then uv, u'v' are interbag edges.
 - By property (1) and (2) it follows that u and u' both are contained in the same bag. Let T_y be this bag and x, x' ∈ V(T) be such that v ∈ T_x and v' ∈ T_{x'} (u ∈ C_x and u' ∈ C_{x'})

 $c = 2t_{k-1} + 1$

• u and u' are rightmost in L^G among vertices of C_x and $C_{x'}$.

•
$$u = c_x$$
 and $u' = c_{x'}$, so $x \neq x'$,

- since x and x' share the parent y, they are ordered in L^T according to the positions of c_x , $c_{x'}$ in L^G ,
- $c_x = u < u' = c_{x'}$ in L^G , this implies x < x' in L^T ,
- vertices of T_x lie before vertices of $t_{x'}$ in L^G , a contradiction to our assumption v' < v in L^G .

$$c \in \{t_{k-1}+1,\ldots,2t_{k-1}\}$$

- Let $i \in \{1, \ldots, t_{k-1}\}$ be such that $c = i + t_{k-1}$.
- $u \neq c_x$ and $u' \neq c_{x'}$, since $u \in C_x$ and $u' \in C_{x'}$, $u < c_x$ and $u' < c_{x'}$ in L^G .
- Edges uc_x and $u'c_{x'}$ are colored with *i*. This implies $c_x \neq c_{x'}$.
- By assumption that v' < v in L^G we conclude x' < x in L^T .
- By the fact that x and x' are ordered in L^T according to the position of c_x and $c_{x'}$ in L^G we know that $c_x < c_{x'}$ in L^G .
- $c_{x'}$ is the rightmost vertex of $C_{x'}$ in L^G , so $u < u' < c_{x'} < c_x$ in L^G . uc_x and $u'c_{x'}$ are nested and have the same color *i*.
- This is a contradiction to the fact that we colored these edges according to the queue layout obtained by the induction hypothesis.

Proof of theorem 3

To complete induction step we need to show that for each $v \in V(G)$ no two edges with v as their right endpoint are colored with the same color. By contradiction, uv, u'v have the same color c and u < v, u' < v in L^G .

- By the induction hypothesis $c \in \{t_{k-1}, \ldots, 2t_{k-1}+1\}$
- Let v be a node and $v \in T_x$. Then $u, u' \in C_x$
- Since c_x is the unique vertex of C_x that is connected by an edge in color $2t_{k-1} + 1$ to v, so $c \neq 2t_{k-1} + 1$
- Our coloring rule for uv, u'v implies that uc_x , $u'c_x$ are colored with $c t_{k-1} \in \{1, \ldots, t_{k-1}\}$
- As c_x is the rightmost vertex of C_x , we obtain that the intrabag edges uc_x and $u'c_x$ have the same color and the same right endpoint in L^G , which is a contradiction to the induction hypothesis.

We use $2t_{k-1} + 1 = 2(2^{k-1} - 1) + 1 = 2^k - 1$ queues in our layout of *G*, this completes the proof of the theorem.

Theorem 4 (Lower bounds)

For each $k \ge 2$, there is a k-tree with queue-number at least k + 1.

Game between Alice and Bob on k-trees ($k \ge 2$), in which Bob has to build a queue-layout of the k-tree to be presented by Alice.

- Game starts with a (k + 1)-clique and an arbitrary linear order of the vertices of this clique.
- Each round of the game consists of two moves:
 - Alice introduces a new vertex v and chooses a k-clique of the current graph to which v becomes adjacent.
 - Bob specifies the position in the current layout where v is inserted.
- Alice wins the *k*-queue game if Bob creates a rainbow of size *k* + 1 in the layout.

For each $k \ge 1$, there is an integer d_k such that Alice has a strategy to win the k-queue game within at most d_k rounds.

< 4 ∰ > <

3

For each $k \ge 1$, there is an integer d_k such that Alice has a strategy to win the k-queue game within at most d_k rounds.

Graph G, clique C in G. We stack on C in H by introducing a new vertex v_C and by making v_C adjacent to the vertices of C. If a graph H' is obtained by simultaneously stacking on each k-clique of

H, then we call H' the k-stack of H.

 $(G_i)_{i\in\mathbb{N}}$ is a family of *k*-trees.

- Let G_0 be a (k+1)-clique,
- G_i is a k-stack of G_{i-1}
- G_i contains an intrinsic copy G'_{i-1} of G_{i-1} as an induced subgraph, which is such that G_i can be obtained by taking the k-stack of G'_{i-1} .

イロト 不得下 イヨト イヨト

Given $k \ge 2$, let d_k be as in the statement of lemma 5. Then the queue-number of the k-tree G_{d_k} is at least k + 1.

Lemma 6 implies Theorem 4.

Given $k \ge 2$, let d_k be as in the statement of lemma 5. Then the queue-number of the k-tree G_{d_k} is at least k + 1.

Lemma 6 implies Theorem 4.

Proof. Consider variant of the *k*-queue game.

- Alice's move in a round of the variant consists of simultaneously stacking on each possible *k*-clique.
- Bob's task in this round to insert all the newly introduced vertices in the current layout.
- Lemma 5 holds for this variant.

By contradiction, linear order L of the vertices of G_{d_k} such that there is no rainbow of size k + 1.

We claim that Bob can use L as an instruction to avoid rainbows of size k + 1 during the first d_k rounds in the variant of the k-queue game.

- After *i* rounds, the graph built by Alice is isomorphic to G_i .
- Bob has to fix induced subgraphs H_0, \ldots, H_{d_k} of G_{d_k} such that $H_{d_k} = G_{d_k}$ and such that H_{i-1} is the intrinsic copy of G_{i-1} in H_i for each $i \in \{1, \ldots, d_k\}$.
- $L|_{V(H_i)}$ is an extension of $L|_{V(H_{i-1})}$ for each $i \in \{1, \ldots, d_k\}$.
- Bob can ensure that the linear order after *i* rounds is equal to $L|_{V(H_i)}$.
- Applying this strategy, the linear order built after *d_k* rounds is equal to *L*.
- As L does not contain a rainbow of size k + 1 Bob wins. This is a contradiction to lemma 5.

Veit Wiechert

On the queue-number of graphs with bounded tree-width. *The Electronic Journal of Combinatorics* 24(1):1.65, 2017. http://www.combinatorics.org/v24i1p65.

Bruce A. Reed.

Algorithmic aspects of tree width.

In Recent advances in algorithms and combinatorics, pages 85–107. New York, NY: Springer, 2003.

Vida Dujmovi'c, Pat Morin, and David R. Wood.

Layout of graphs with bounded tree-width.

SIAM J. Comput., 34(3):553–579, 2005.