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The content of the slides taken from article
" Queue-number of graphs with bounded tree-width"
by Veit Wiechert[1].
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Overview

@ Basic definitions

9 Upper bound for queue-number

© Lower bounds for queue-number
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Queue/stack layouts

Queue layout:
@ Linear order of the vertices.
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Queue/stack layouts

Queue layout:
@ Linear order of the vertices.

@ Assignment of the edges to queues, such that no two edges in a single
queue are nested.
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Queue/stack layouts

Queue layout:

@ Linear order of the vertices.
@ Assignment of the edges to queues, such that no two edges in a single
queue are nested.

Stack layout:

@ Linear order of the vertices.
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Queue/stack layouts

Queue layout:

Linear order of the vertices.

Assignment of the edges to queues, such that no two edges in a single
queue are nested.

Stack layout:

Linear order of the vertices.

Assignment of the edges to stacks, such that no two edges in a single
stack cross.
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Examples

Queue-number: 1
Stack-number: 1
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Examples

@vG

0‘9 A

Queue-number: 2
Stack-number: 2
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Queue-number: 2
Stack-number: 1
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Queue-number: 1
Stack-number: 2
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k-rainbow approach
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Tree-decomposition

e G=(V,E)
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Tree-decomposition

e G=(V,E)
o tree-decomposition of G is a pair (T,{Tx}xev),
tree T and a family of non-empty subtrees of T,
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Tree-decomposition

e G=(V,E)
o tree-decomposition of G is a pair (T,{Tx}xev),

tree T and a family of non-empty subtrees of T,
VayeeV(Tx) N V(T,) #0,
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Tree-decomposition

e G=(V,E)
o tree-decomposition of G is a pair (T,{Tx}xev),
tree T and a family of non-empty subtrees of T,

VayeeV(Tx) N V(T,) #0,
each node u € V(T) induces a bag {x € V:u € T,}.
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Tree-decomposition

e G=(V,E)
o tree-decomposition of G is a pair (T,{Tx}xev),
tree T and a family of non-empty subtrees of T,

VayeeV(Tx) N V(T,) #0,
each node u € V(T) induces a bag {x € V:u € T,}.

@ width of the tree-decomposition:

maximum size of a bag — 1,
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Tree-decomposition

e G=(V,E)

o tree-decomposition of G is a pair (T,{Tx}xev),
tree T and a family of non-empty subtrees of T,
VayeeV(Tx) N V(T,) #0,
each node u € V(T) induces a bag {x € V:u € T,}.

@ width of the tree-decomposition:

maximum size of a bag — 1,

o tree-width of G is the minimum width of a tree-decomposition of G
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Tree-partition

e G=(V,E)
@ tree-partition of G is a pair (T,{Tx:x € V(T)}):
o tree (forest) T,
o partition of V into sets { Ty : x € V(T)}, such that:
Yuvev (E”XEV(T)U7 ve T,V E”xyeE(T)u e Ty\Nve Ty) ,

@ T, is a bag of the tree-partition.
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Tree-partition

X0

X1 X2

X3 X4 X5 X6

Figure: Tree-partition
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k-tree definition:
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k-tree definition:

@ empty graph is a k-tree,
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k-tree definition:
@ empty graph is a k-tree,

@ each graph obtained by adding a vertex v to a k-tree so that the
adjacent vertices of v form a clique of size at most k is also a k-tree,
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Upper bound for queue-number

Theorem 1 (Upper bound for queue-number)
Let k > 0. For all graphs G with tree-width at most k,

qn(G) <2k —1.
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Upper bound for queue-number

Lemma 2 ([Vida Dujmovi'c, Pat Morin, and David R. Wood.])

Let G be a k-tree. Then there is a rooted tree-partition
(T, {T«:x € V(T)}) of G such that:

e for each node x of T, the induced subgraph G[T] is a connected
(k — 1)-tree,

@ for each nonroot node x € T, ify € T is the parent node of x in T
then the vertices in T, with a neighbor in T, form a clique.
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Upper bound for queue-number

Lemma 2 ([Vida Dujmovi'c, Pat Morin, and David R. Wood.])

Let G be a k-tree. Then there is a rooted tree-partition
(T, {T«:x € V(T)}) of G such that:

e for each node x of T, the induced subgraph G[T] is a connected
(k — 1)-tree,

@ for each nonroot node x € T, ify € T is the parent node of x in T
then the vertices in T, with a neighbor in T, form a clique.

Let k > 0. For each k-tree G, there is a queue layout using at most
t, = 2K — 1 queues, such that for each v € V(G), edges with v as their
right endpoint in the layout are assigned to pairwise different queues.
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Proof of theorem 3

Induction by k. For k = 0:

@ the graph G has no edges - it requires 0 queues.
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Proof of theorem 3

Induction by k. For k = 0:

@ the graph G has no edges - it requires 0 queues.
For k > 1:

@ G is a connected™ k-tree.

o Let (T,{Tx:x € V(T)}) be a tree-partition of G with r as root of
T [lemma 2].

@ For each node* calculate a depth (distance to rin T).

o Construct a linear order LC for the queue layout of G and then assign
the edges to queues.
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Proof of theorem 3 - How to construct L6?

Intuition on build LC:
@ BFS-like procedure (by depth).
@ Dynamically construct order for each depth and append it to the right
of the one already produced. To do so:

o Specify a linear order L] of the nodes at depth d in T.
o Replace each node x in L; by the linear order of the layout obtained by
applying induction to the (k — 1)-tree G[T4].

Marcin Muszalski (UJ) On the queue-number... November 8, 2018 17 / 33



Proof of theorem 3 - How to construct L6?

At depth 0:
@ Only one node in LJ.
o Induction on the (k — 1)-tree G[T,] to obtain LS.
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Proof of theorem 3 - How to construct L6?

At depth 0:
@ Only one node in LJ.
o Induction on the (k — 1)-tree G[T,] to obtain LS.
At depth d we have Lg_l, L;_l. How to construct L;r?
@ Order the nodes according to their parent nodes (lex-BFS ordering):

o x<yinl} <= parent(x) < parent(y) in L} ;.
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Proof of theorem 3 - How to construct L6?

At depth 0:
@ Only one node in LJ.
o Induction on the (k — 1)-tree G[T,] to obtain LS.
At depth d we have Lg_l, L;_l. How to construct L;r?
@ Order the nodes according to their parent nodes (lex-BFS ordering):
o x<yinl} <= parent(x) < parent(y) in L} ;.

What if parent(x) = parent(y)?

Marcin Muszalski (UJ) On the queue-number... November 8, 2018 18 / 33



Proof of theorem 3 - How to construct L;?

Suppose that xi,...,x have the same parent y at depth d — 1.

o Consider the cliques C,,... C, in T,.
e Foreach i€ {1,...,/} let ¢, be a rightmost vertex of C,..
@ Order xq,...,x according to the positions of ¢, ..., Cx.
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Proof of theorem 3 - How to construct L;?

Suppose that xi,...,x have the same parent y at depth d — 1.

o Consider the cliques C,,... C, in T,.
e Foreach i€ {1,...,/} let ¢, be a rightmost vertex of C,..
@ Order xq,...,x according to the positions of ¢, ..., Cx.

What about nodes for which ¢,; = cXJ.?

@ Order them arbitrarily so that L; becomes a linear order of nodes at
depth d...
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Proof of theorem 3 - How to construct L;?

E.g. ordered vertices at depth at most 1 from figure 1.
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Proof of theorem 3 - How to construct L6?

By lemma 2, the bag of each node x in the tree-partition induces a
(k — 1)-tree, which allows us to apply induction.

Let L, be the linear order of the queue layout obtained in this way.
o Replace each node x in L] by the linear order L.
@ Put the resulting order of vertices at depth d to the right of Lg_l,
which yields a linear order Lff of all vertices at depth at most d.
@ lterate this construction until we reach the maximum depth.

Let L® be order obtained by above procedure and L7 order of all the
nodes of T.
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Proof of theorem 3 - LT

LT has the following properties. For nodes x,y € V(T):
d(x)<d(y)inT = x<yinlLT (1)

parent(x) < parent(y) in LT = x<yinlLT (2)
Property (1) asserts that L7 is a BFS ordering, and combined with
property (2) we have that L' is a Lex-BFS ordering.
@ No two edges of T are nested in L.

o If two interbag edges uv and u/v’ are nested in L® then u and v are
in the same bag of the tree-partition.
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Proof of theorem 3 - coloring

First we will color the edges with colors from {1,...,2t,_1 + 1} and then
show that each color induces a queue with respect to LC.
Intrabag edges:

@ For each bag T, color the contained edges according to the queue

assignment that is given by the induction hypothesis for the
(k — 1)-tree G[T4]

@ We use the colors 1, ..., tx_1 for this coloring. Colors are reused.
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Proof of theorem 3 - coloring

First we will color the edges with colors from {1,...,2t,_1 + 1} and then
show that each color induces a queue with respect to LC.

Intrabag edges:

@ For each bag T, color the contained edges according to the queue
assignment that is given by the induction hypothesis for the
(k — 1)-tree G[T4]
@ We use the colors 1, ..., tx_1 for this coloring. Colors are reused.
Interbag edges, let uv € E(G) (d(u) < d(v)):
@ thereisanode xin T suchthatve T, and v € Tp(X),
e if u = c,, then we color uv with 2t,_1 + 1,

@ otherwise we color uv with i+ tx_1 where i € {1,..., tx_1} is the
color of the intrabag edge uc.
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Proof of theorem 3 - queues

Claim. For each color ¢ € {1,...,2t,_1 + 1}, the edges of G colored ¢
form a queue with respect to LC.

Proof by contradiction.

o Let uv, u'v’ be edges with color ¢ that are nested in L and
u<u <v <v.

e If ce {1,...,tk_1} then the edges are intrabag edges,

o if they lie within the same bag, then they cannot be nested (valid
queue layout from the induction hypothesis),

o if they lie in different bags, then both endpoints of one edge lie before
both endpoints of the other edge in L®, a contradiction.
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Proof of theorem 3 - queues

@ ¢ > ty_1+1, then uv, vV are interbag edges.

e By property (1) and (2) it follows that u and v’ both are contained in

the same bag. Let T, be this bag and x,x’ € V(T) be such that
veTyand v € Ty (ue G and U € Cy)
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Proof of theorem 3 - queues

@ ¢ > ty_1+1, then uv, vV are interbag edges.

e By property (1) and (2) it follows that u and v’ both are contained in
the same bag. Let T, be this bag and x,x’ € V(T) be such that
veTyand v € Ty (ue G and U € Cy)

c=2t_1+1

u and ' are rightmost in L® among vertices of Cy and Cy.

@ u=cyand v = ¢y, so x # X,
since x and x’ share the parent y, they are ordered in LT according to
the positions of ¢y, ¢y in LS,

cx=u< U =cpin LC, this implies x < x" in LT,

vertices of T, lie before vertices of t,/ in LS, a contradiction to our
assumption v/ < v in LS.
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Proof of theorem 3 - queues

cc
°

{tkm1+1,...,2t61}

Let i € {1,..., tk_1} be such that ¢ =i + t,_;.

u#cxand v # cy,sinceue Ceand v/ € G, u< ceand v/ < ¢y

in LS.

Edges uc, and u'c, are colored with i. This implies ¢, # cy.

By assumption that v/ < v in L® we conclude x’ < x in L7,

By the fact that x and x’ are ordered in LT according to the position

of ¢, and ¢y in LC we know that ¢, < ¢y in LC.

Cy is the rightmost vertex of Cy in L¢ sou<u <cy <cyin L.

ucy and u'cy are nested and have the same color i.

This is a contradiction to the fact that we colored these edges

according to the queue layout obtained by the induction hypothesis.
O
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Proof of theorem 3

To complete induction step we need to show that for each v € V(G) no
two edges with v as their right endpoint are colored with the same color.
By contradiction, uv, v'v have the same color c and u < v, ' < v in LC.

@ By the induction hypothesis ¢ € {tx_1,...,2tk—1 + 1}

@ Let vbeanodeand v e T,. Then u, v € C,

@ Since ¢y is the unique vertex of C, that is connected by an edge in
color 2t 1 +1tov,soc#2t_1+1

@ Our coloring rule for uv, u'v implies that ucy, uv'cy are colored with
Cc—tx_1 € {1,...,1‘/(,1}

@ As ¢, is the rightmost vertex of C,, we obtain that the intrabag edges
uck and u’c, have the same color and the same right endpoint in LC,
which is a contradiction to the induction hypothesis.

We use 2t,_1 +1 =2(2k=1 —1) +1 = 2k — 1 queues in our layout of G,
this completes the proof of the theorem.
O

Marcin Muszalski (UJ) On the queue-number... November 8, 2018 27 /33



Lower bounds for queue-number

Theorem 4 (Lower bounds)

For each k > 2, there is a k-tree with queue-number at least k + 1.
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Game between Alice and Bob on k-trees (k > 2), in which Bob has to
build a queue-layout of the k-tree to be presented by Alice.
o Game starts with a (k + 1)-clique and an arbitrary linear order of the
vertices of this clique.
@ Each round of the game consists of two moves:
o Alice introduces a new vertex v and chooses a k-clique of the current
graph to which v becomes adjacent.
e Bob specifies the position in the current layout where v is inserted.
@ Alice wins the k-queue game if Bob creates a rainbow of size k 4+ 1 in
the layout.
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For each k > 1, there is an integer dj such that Alice has a strategy to
win the k-queue game within at most dy rounds.
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For each k > 1, there is an integer dj such that Alice has a strategy to
win the k-queue game within at most dy rounds.

Graph G, clique C in G. We stack on C in H by introducing a new vertex
vc and by making v¢ adjacent to the vertices of C.
If a graph H' is obtained by simultaneously stacking on each k-clique of
H, then we call H' the k-stack of H.
(Gi)ien is a family of k-trees.

o Let Gy be a (k + 1)-clique,

@ G; is a k-stack of G;_1

@ G; contains an intrinsic copy G,-/_l of G;_1 as an induced subgraph,

which is such that G; can be obtained by taking the k-stack of G,-/_l.
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Given k > 2, let di be as in the statement of lemma 5.
Then the queue-number of the k-tree Gg, is at least k + 1.

Lemma 6 implies Theorem 4.
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Given k > 2, let di be as in the statement of lemma 5.
Then the queue-number of the k-tree Gg, is at least k + 1.

Lemma 6 implies Theorem 4.
Proof. Consider variant of the k-queue game.

@ Alice's move in a round of the variant consists of simultaneously
stacking on each possible k-clique.

@ Bob's task in this round to insert all the newly introduced vertices in
the current layout.

@ Lemma 5 holds for this variant.
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By contradiction, linear order L of the vertices of Gy, such that there is no
rainbow of size k + 1.
We claim that Bob can use L as an instruction to avoid rainbows of size
k + 1 during the first di rounds in the variant of the k-queue game.
@ After i rounds, the graph built by Alice is isomorphic to G;.
@ Bob has to fix induced subgraphs Hp, ..., Hy, of Gg, such that
Hg, = Gg, and such that H;_; is the intrinsic copy of G;_1 in H; for
each i e {1,...,dk}.
® L|y(n,) is an extension of L|ypy, ) for each i € {1,..., dy}.
@ Bob can ensure that the linear order after i rounds is equal to L|y(,).
@ Applying this strategy, the linear order built after d rounds is equal
to L.
@ As [ does not contain a rainbow of size k + 1 Bob wins.
This is a contradiction to lemma 5. O
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