Queue-number of graphs with bounded tree-width Veit Wiechert

Marcin Muszalski

Uniwersytet Jagielloński
November 8, 2018

The content of the slides taken from article 'Queue-number of graphs with bounded tree-width" by Veit Wiechert[1].

Overview

(1) Basic definitions
(2) Upper bound for queue-number
(3) Lower bounds for queue-number

Queue/stack layouts

Queue layout:

- Linear order of the vertices.

Queue/stack layouts

Queue layout:

- Linear order of the vertices.
- Assignment of the edges to queues, such that no two edges in a single queue are nested.

Queue/stack layouts

Queue layout:

- Linear order of the vertices.
- Assignment of the edges to queues, such that no two edges in a single queue are nested.

Stack layout:

- Linear order of the vertices.

Queue/stack layouts

Queue layout:

- Linear order of the vertices.
- Assignment of the edges to queues, such that no two edges in a single queue are nested.

Stack layout:

- Linear order of the vertices.
- Assignment of the edges to stacks, such that no two edges in a single stack cross.

Examples

Queue-number: 1
Stack-number: 1

Examples

Queue-number: 2
Stack-number: 2

Examples

Queue-number: 2
Stack-number: 1

Examples

Queue-number: 1
Stack-number: 2

k-rainbow approach

Tree-decomposition

- $G=(V, E)$

Tree-decomposition

- $G=(V, E)$
- tree-decomposition of G is a pair $\left(T,\left\{T_{x}\right\}_{x \in V}\right)$, tree T and a family of non-empty subtrees of T,

Tree-decomposition

- $G=(V, E)$
- tree-decomposition of G is a pair $\left(T,\left\{T_{x}\right\}_{x \in V}\right)$, tree T and a family of non-empty subtrees of T, $\forall_{x y \in E} V\left(T_{x}\right) \cap V\left(T_{y}\right) \neq \emptyset$,

Tree-decomposition

- $G=(V, E)$
- tree-decomposition of G is a pair $\left(T,\left\{T_{x}\right\}_{x \in V}\right)$, tree T and a family of non-empty subtrees of T, $\forall_{x y \in E} V\left(T_{x}\right) \cap V\left(T_{y}\right) \neq \emptyset$, each node $u \in V(T)$ induces a bag $\left\{x \in V: u \in T_{x}\right\}$.

Tree-decomposition

- $G=(V, E)$
- tree-decomposition of G is a pair $\left(T,\left\{T_{x}\right\}_{x \in V}\right)$, tree T and a family of non-empty subtrees of T, $\forall_{x y \in E} V\left(T_{x}\right) \cap V\left(T_{y}\right) \neq \emptyset$, each node $u \in V(T)$ induces a bag $\left\{x \in V: u \in T_{x}\right\}$.
- width of the tree-decomposition:

$$
\text { maximum size of a bag }-1 \text {, }
$$

Tree-decomposition

- $G=(V, E)$
- tree-decomposition of G is a pair $\left(T,\left\{T_{x}\right\}_{x \in V}\right)$, tree T and a family of non-empty subtrees of T, $\forall_{x y \in E} V\left(T_{x}\right) \cap V\left(T_{y}\right) \neq \emptyset$, each node $u \in V(T)$ induces a bag $\left\{x \in V: u \in T_{x}\right\}$.
- width of the tree-decomposition:

$$
\text { maximum size of a bag }-1 \text {, }
$$

- tree-width of G is the minimum width of a tree-decomposition of G

Tree-partition

- $G=(V, E)$
- tree-partition of G is a pair $\left(T,\left\{T_{x}: x \in V(T)\right\}\right)$:
- tree (forest) T,
- partition of V into sets $\left\{T_{x}: x \in V(T)\right\}$, such that:

$$
\forall u v \in V\left(\exists!_{x \in V(T)} u, v \in T_{x} \underline{\vee} \exists!_{x y \in E(T)} u \in T_{x} \wedge v \in T_{y}\right),
$$

- T_{x} is a bag of the tree-partition.

Tree-partition

Figure: Tree-partition

k-tree

k-tree definition:

k-tree

k-tree definition:

- empty graph is a k-tree,

k-tree

k-tree definition:

- empty graph is a k-tree,
- each graph obtained by adding a vertex v to a k-tree so that the adjacent vertices of v form a clique of size at most k is also a k-tree,

Upper bound for queue-number

Theorem 1 (Upper bound for queue-number)
Let $k \geq 0$. For all graphs G with tree-width at most k,

$$
q n(G) \leq 2^{k}-1
$$

Upper bound for queue-number

Lemma 2 ([Vida Dujmovi'c, Pat Morin, and David R. Wood.])

Let G be a k-tree. Then there is a rooted tree-partition
$\left(T,\left\{T_{x}: x \in V(T)\right\}\right)$ of G such that:

- for each node x of T, the induced subgraph $G\left[T_{x}\right]$ is a connected ($k-1$)-tree,
- for each nonroot node $x \in T$, if $y \in T$ is the parent node of x in T then the vertices in T_{y} with a neighbor in T_{x} form a clique.

Upper bound for queue-number

Lemma 2 ([Vida Dujmovi'c, Pat Morin, and David R. Wood.])

Let G be a k-tree. Then there is a rooted tree-partition
$\left(T,\left\{T_{x}: x \in V(T)\right\}\right)$ of G such that:

- for each node x of T, the induced subgraph $G\left[T_{x}\right]$ is a connected ($k-1$)-tree,
- for each nonroot node $x \in T$, if $y \in T$ is the parent node of x in T then the vertices in T_{y} with a neighbor in T_{x} form a clique.

Theorem 3

Let $k \geq 0$. For each k-tree G, there is a queue layout using at most $t_{k}=2^{k}-1$ queues, such that for each $v \in V(G)$, edges with v as their right endpoint in the layout are assigned to pairwise different queues.

Proof of theorem 3

Induction by k. For $k=0$:

- the graph G has no edges - it requires 0 queues.

Proof of theorem 3

Induction by k. For $k=0$:

- the graph G has no edges - it requires 0 queues.

For $k \geq 1$:

- G is a connected* k-tree.
- Let $\left(T,\left\{T_{x}: x \in V(T)\right\}\right)$ be a tree-partition of G with r as root of T [lemma 2].
- For each node* calculate a depth (distance to r in T).
- Construct a linear order L^{G} for the queue layout of G and then assign the edges to queues.

Proof of theorem 3 - How to construct L^{G} ?

Intuition on build L^{G} :

- BFS-like procedure (by depth).
- Dynamically construct order for each depth and append it to the right of the one already produced. To do so:
- Specify a linear order L_{d}^{T} of the nodes at depth d in T.
- Replace each node x in L_{d}^{T} by the linear order of the layout obtained by applying induction to the $(k-1)$-tree $G\left[T_{x}\right]$.

Proof of theorem 3 - How to construct L^{G} ?

At depth 0 :

- Only one node in L_{0}^{T}.
- Induction on the $(k-1)$-tree $G\left[T_{r}\right]$ to obtain L_{0}^{G}.

Proof of theorem 3 - How to construct L^{G} ?

At depth 0 :

- Only one node in L_{0}^{T}.
- Induction on the $(k-1)$-tree $G\left[T_{r}\right]$ to obtain L_{0}^{G}. At depth d we have L_{d-1}^{G}, L_{d-1}^{T}. How to construct L_{d}^{T} ?
- Order the nodes according to their parent nodes (lex-BFS ordering):
- $x<y$ in $L_{d}^{T} \Longleftrightarrow \operatorname{parent}(x)<\operatorname{parent}(y)$ in L_{d-1}^{T}.

Proof of theorem 3 - How to construct L^{G} ?

At depth 0 :

- Only one node in L_{0}^{T}.
- Induction on the $(k-1)$-tree $G\left[T_{r}\right]$ to obtain L_{0}^{G}.

At depth d we have L_{d-1}^{G}, L_{d-1}^{T}. How to construct L_{d}^{T} ?

- Order the nodes according to their parent nodes (lex-BFS ordering):
- $x<y$ in $L_{d}^{T} \Longleftrightarrow \operatorname{parent}(x)<\operatorname{parent}(y)$ in L_{d-1}^{T}.

What if $\operatorname{parent}(x)=\operatorname{parent}(y)$?

Proof of theorem 3 - How to construct L_{d}^{T} ?

Suppose that $x_{1}, \ldots, x_{\text {I }}$ have the same parent y at depth $d-1$.

- Consider the cliques $C_{x_{1}}, \ldots C_{x_{2}}$ in T_{y}.
- For each $i \in\{1, \ldots, I\}$ let $c_{x_{i}}$ be a rightmost vertex of $C_{x_{i}}$.
- Order x_{1}, \ldots, x_{l} according to the positions of $c_{x_{1}}, \ldots, c_{x_{l}}$.

Proof of theorem 3 - How to construct L_{d}^{T} ?

Suppose that $x_{1}, \ldots, x_{\text {I }}$ have the same parent y at depth $d-1$.

- Consider the cliques $C_{x_{1}}, \ldots C_{x_{2}}$ in T_{y}.
- For each $i \in\{1, \ldots, I\}$ let $c_{x_{i}}$ be a rightmost vertex of $C_{x_{i}}$.
- Order x_{1}, \ldots, x_{l} according to the positions of $c_{x_{1}}, \ldots, c_{x_{l}}$.

What about nodes for which $c_{x_{i}}=c_{x_{j}}$?

- Order them arbitrarily so that L_{d}^{T} becomes a linear order of nodes at depth d...

Proof of theorem 3 - How to construct L_{d}^{T} ?

E.g. ordered vertices at depth at most 1 from figure 1.

Proof of theorem 3 - How to construct L^{G} ?

By lemma 2, the bag of each node x in the tree-partition induces a $(k-1)$-tree, which allows us to apply induction.

Let L_{x} be the linear order of the queue layout obtained in this way.

- Replace each node x in L_{d}^{T} by the linear order L_{x}.
- Put the resulting order of vertices at depth d to the right of L_{d-1}^{G}, which yields a linear order L_{d}^{G} of all vertices at depth at most d.
- Iterate this construction until we reach the maximum depth.

Let L^{G} be order obtained by above procedure and L^{T} order of all the nodes of T.

Proof of theorem $3-L^{T}$

L^{T} has the following properties. For nodes $x, y \in V(T)$:

$$
\begin{gather*}
d(x)<d(y) \text { in } T \Longrightarrow x<y \text { in } L^{T} \tag{1}\\
\operatorname{parent}(x)<\operatorname{parent}(y) \text { in } L^{T} \Longrightarrow x<y \text { in } L^{T} \tag{2}
\end{gather*}
$$

Property (1) asserts that L^{T} is a BFS ordering, and combined with property (2) we have that L^{T} is a Lex-BFS ordering.

- No two edges of T are nested in L^{T}.
- If two interbag edges $u v$ and $u^{\prime} v^{\prime}$ are nested in L^{G} then u and u^{\prime} are in the same bag of the tree-partition.

Proof of theorem 3 - coloring

First we will color the edges with colors from $\left\{1, \ldots, 2 t_{k-1}+1\right\}$ and then show that each color induces a queue with respect to L^{G}.

Intrabag edges:

- For each bag T_{x} color the contained edges according to the queue assignment that is given by the induction hypothesis for the ($k-1$)-tree $G\left[T_{x}\right]$
- We use the colors $1, \ldots, t_{k-1}$ for this coloring. Colors are reused.

Proof of theorem 3 - coloring

First we will color the edges with colors from $\left\{1, \ldots, 2 t_{k-1}+1\right\}$ and then show that each color induces a queue with respect to L^{G}.

Intrabag edges:

- For each bag T_{x} color the contained edges according to the queue assignment that is given by the induction hypothesis for the ($k-1$)-tree $G\left[T_{x}\right]$
- We use the colors $1, \ldots, t_{k-1}$ for this coloring. Colors are reused. Interbag edges, let $u v \in E(G)(d(u)<d(v))$:
- there is a node x in T such that $v \in T_{x}$ and $u \in T_{p(x)}$,
- if $u=c_{x}$, then we color $u v$ with $2 t_{k-1}+1$,
- otherwise we color $u v$ with $i+t_{k-1}$ where $i \in\left\{1, \ldots, t_{k-1}\right\}$ is the color of the intrabag edge $u c_{x}$.

Proof of theorem 3 - queues

Claim. For each color $c \in\left\{1, \ldots, 2 t_{k-1}+1\right\}$, the edges of G colored c form a queue with respect to L^{G}.

Proof by contradiction.

- Let $u v, u^{\prime} v^{\prime}$ be edges with color c that are nested in L^{G} and $u<u^{\prime}<v^{\prime}<v$.
- If $c \in\left\{1, \ldots, t_{k-1}\right\}$ then the edges are intrabag edges,
- if they lie within the same bag, then they cannot be nested (valid queue layout from the induction hypothesis),
- if they lie in different bags, then both endpoints of one edge lie before both endpoints of the other edge in L^{G}, a contradiction.

Proof of theorem 3 - queues

- $c \geq t_{k-1}+1$, then $u v, u^{\prime} v^{\prime}$ are interbag edges.
- By property (1) and (2) it follows that u and u^{\prime} both are contained in the same bag. Let T_{y} be this bag and $x, x^{\prime} \in V(T)$ be such that $v \in T_{x}$ and $v^{\prime} \in T_{x^{\prime}}\left(u \in C_{x}\right.$ and $\left.u^{\prime} \in C_{x^{\prime}}\right)$

Proof of theorem 3 - queues

- $c \geq t_{k-1}+1$, then $u v, u^{\prime} v^{\prime}$ are interbag edges.
- By property (1) and (2) it follows that u and u^{\prime} both are contained in the same bag. Let T_{y} be this bag and $x, x^{\prime} \in V(T)$ be such that $v \in T_{x}$ and $v^{\prime} \in T_{x^{\prime}}\left(u \in C_{x}\right.$ and $\left.u^{\prime} \in C_{x^{\prime}}\right)$
$c=2 t_{k-1}+1$
- u and u^{\prime} are rightmost in L^{G} among vertices of C_{x} and $C_{x^{\prime}}$.
- $u=c_{x}$ and $u^{\prime}=c_{x^{\prime}}$, so $x \neq x^{\prime}$,
- since x and x^{\prime} share the parent y, they are ordered in L^{T} according to the positions of $c_{x}, c_{x^{\prime}}$ in L^{G},
- $c_{x}=u<u^{\prime}=c_{x^{\prime}}$ in L^{G}, this implies $x<x^{\prime}$ in L^{T},
- vertices of T_{x} lie before vertices of $t_{x^{\prime}}$ in L^{G}, a contradiction to our assumption $v^{\prime}<v$ in L^{G}.

Proof of theorem 3 - queues

$c \in\left\{t_{k-1}+1, \ldots, 2 t_{k-1}\right\}$

- Let $i \in\left\{1, \ldots, t_{k-1}\right\}$ be such that $c=i+t_{k-1}$.
- $u \neq c_{x}$ and $u^{\prime} \neq c_{x^{\prime}}$, since $u \in C_{x}$ and $u^{\prime} \in C_{x^{\prime}}, u<c_{x}$ and $u^{\prime}<c_{x^{\prime}}$ in L^{G}.
- Edges $u c_{x}$ and $u^{\prime} c_{x^{\prime}}$ are colored with i. This implies $c_{x} \neq c_{x^{\prime}}$.
- By assumption that $v^{\prime}<v$ in L^{G} we conclude $x^{\prime}<x$ in L^{T}.
- By the fact that x and x^{\prime} are ordered in L^{T} according to the position of c_{x} and $c_{x^{\prime}}$ in L^{G} we know that $c_{x}<c_{x^{\prime}}$ in L^{G}.
- $c_{x^{\prime}}$ is the rightmost vertex of $C_{x^{\prime}}$ in L^{G}, so $u<u^{\prime}<c_{x^{\prime}}<c_{x}$ in L^{G}. $u c_{x}$ and $u^{\prime} c_{x^{\prime}}$ are nested and have the same color i.
- This is a contradiction to the fact that we colored these edges according to the queue layout obtained by the induction hypothesis.

Proof of theorem 3

To complete induction step we need to show that for each $v \in V(G)$ no two edges with v as their right endpoint are colored with the same color. By contradiction, $u v, u^{\prime} v$ have the same color c and $u<v, u^{\prime}<v$ in L^{G}.

- By the induction hypothesis $c \in\left\{t_{k-1}, \ldots, 2 t_{k-1}+1\right\}$
- Let v be a node and $v \in T_{x}$. Then $u, u^{\prime} \in C_{x}$
- Since c_{x} is the unique vertex of C_{x} that is connected by an edge in color $2 t_{k-1}+1$ to v, so $c \neq 2 t_{k-1}+1$
- Our coloring rule for $u v, u^{\prime} v$ implies that $u c_{x}, u^{\prime} c_{x}$ are colored with $c-t_{k-1} \in\left\{1, \ldots, t_{k-1}\right\}$
- As c_{x} is the rightmost vertex of C_{x}, we obtain that the intrabag edges $u c_{x}$ and $u^{\prime} c_{x}$ have the same color and the same right endpoint in L^{G}, which is a contradiction to the induction hypothesis.
We use $2 t_{k-1}+1=2\left(2^{k-1}-1\right)+1=2^{k}-1$ queues in our layout of G, this completes the proof of the theorem.

Lower bounds for queue-number

Theorem 4 (Lower bounds)

For each $k \geq 2$, there is a k-tree with queue-number at least $k+1$.

k-queue game

Game between Alice and Bob on k-trees $(k \geq 2)$, in which Bob has to build a queue-layout of the k-tree to be presented by Alice.

- Game starts with a $(k+1)$-clique and an arbitrary linear order of the vertices of this clique.
- Each round of the game consists of two moves:
- Alice introduces a new vertex v and chooses a k-clique of the current graph to which v becomes adjacent.
- Bob specifies the position in the current layout where v is inserted.
- Alice wins the k-queue game if Bob creates a rainbow of size $k+1$ in the layout.

k-queue game

Lemma 5

For each $k \geq 1$, there is an integer d_{k} such that Alice has a strategy to win the k-queue game within at most d_{k} rounds.

k-queue game

Lemma 5

For each $k \geq 1$, there is an integer d_{k} such that Alice has a strategy to win the k-queue game within at most d_{k} rounds.

Graph G, clique C in G. We stack on C in H by introducing a new vertex v_{C} and by making v_{C} adjacent to the vertices of C.
If a graph H^{\prime} is obtained by simultaneously stacking on each k-clique of H, then we call H^{\prime} the k-stack of H.
$\left(G_{i}\right)_{i \in \mathbb{N}}$ is a family of k-trees.

- Let G_{0} be a $(k+1)$-clique,
- G_{i} is a k-stack of G_{i-1}
- G_{i} contains an intrinsic copy G_{i-1}^{\prime} of G_{i-1} as an induced subgraph, which is such that G_{i} can be obtained by taking the k-stack of G_{i-1}^{\prime}.

k-queue game

Lemma 6

Given $k \geq 2$, let d_{k} be as in the statement of lemma 5. Then the queue-number of the k-tree $G_{d_{k}}$ is at least $k+1$.

Lemma 6 implies Theorem 4.

k-queue game

Lemma 6

Given $k \geq 2$, let d_{k} be as in the statement of lemma 5.
Then the queue-number of the k-tree $G_{d_{k}}$ is at least $k+1$.
Lemma 6 implies Theorem 4.
Proof. Consider variant of the k-queue game.

- Alice's move in a round of the variant consists of simultaneously stacking on each possible k-clique.
- Bob's task in this round to insert all the newly introduced vertices in the current layout.
- Lemma 5 holds for this variant.

k-queue game

By contradiction, linear order L of the vertices of $G_{d_{k}}$ such that there is no rainbow of size $k+1$.
We claim that Bob can use L as an instruction to avoid rainbows of size $k+1$ during the first d_{k} rounds in the variant of the k-queue game.

- After i rounds, the graph built by Alice is isomorphic to G_{i}.
- Bob has to fix induced subgraphs $H_{0}, \ldots, H_{d_{k}}$ of $G_{d_{k}}$ such that $H_{d_{k}}=G_{d_{k}}$ and such that H_{i-1} is the intrinsic copy of G_{i-1} in H_{i} for each $i \in\left\{1, \ldots, d_{k}\right\}$.
- $L_{V\left(H_{i}\right)}$ is an extension of $L_{V\left(H_{i-1}\right)}$ for each $i \in\left\{1, \ldots, d_{k}\right\}$.
- Bob can ensure that the linear order after i rounds is equal to $\left.L\right|_{V\left(H_{i}\right)}$.
- Applying this strategy, the linear order built after d_{k} rounds is equal to L.
- As L does not contain a rainbow of size $k+1$ Bob wins. This is a contradiction to lemma 5.

References

Reit Wiechert
On the queue-number of graphs with bounded tree-width.
The Electronic Journal of Combinatorics 24(1):1.65, 2017.
http://www.combinatorics.org/v24i1p65.
R Bruce A. Reed.
Algorithmic aspects of tree width.
In Recent advances in algorithms and combinatorics, pages 85-107. New York, NY: Springer, 2003.

Rida Dujmovi'c, Pat Morin, and David R. Wood.
Layout of graphs with bounded tree-width.
SIAM J. Comput., 34(3):553-579, 2005.

