Meyniel's conjecture

Cops and robbers

Cop number

- NP hard
- Parameterized version W[2] hard

Meyniel's conjecture

Soft Meyniel's conjecture

Guarding subgraphs

Induced subgraph H is called k-guardable if k cops are are enough to guard it completely.

Closed neighbourhood of a vertex is 1-guardable.

Isometric paths

- A path P of G is called isometric, iff for every pair of vertices on P, shortest distance between then in G can be realized with only edges from P
- Isometric paths are 1-guardable!

Moore bound

n - order, Δ - max degree, D - diameter

$$n \le 1 + \Delta \left(\frac{(\Delta - 1)^D - 1}{\Delta - 2}\right)$$

As a consequence,
$$D,\Delta = \Omega(\frac{\log n}{\log \log n})$$

First bound

 $O(n\frac{\log \log n}{\log n})$

Greedy - find biggest isometric path or closed neighbourhood, place a cop there and run recursively on the rest of graph

Minimum distance caterpillar

Induced subgraph H st:

- H is a tree
- There is a path P in H st. distance to P from every vertex of H is <= 1

Minimum distance caterpillar

- Caterpillars are 5-guardable
- In every graph there is caterpillar of order at least log(n)

Second bound

Same as previously but using caterpillars.

Best known bound

Random graphs

We measure expected cop number for random graph G(n,p).

For p sufficiently large Meyniel's bound holds for random graphs.

Graphs with diameter 2

Lower bound is tight

Family of graphs was found, for which cop number is

Open problem if it's the best lower bound.