Meyniel's conjecture

Cops and robbers

Cop number

- NP hard
- Parameterized version W[2] hard

Meyniel's conjecture

$$
O(\sqrt{n})
$$

Soft Meyniel's conjecture

$$
O\left(n^{1-c}\right)
$$

Guarding subgraphs

Induced subgraph H is called k -guardable if k cops are are enough to guard it completely.
Closed neighbourhood of a vertex is 1-guardable.

Isometric paths

- A path P of G is called isometric, iff for every pair of vertices on P, shortest distance between then in G can be realized with only edges from P
- Isometric paths are 1-guardable!

Moore bound

n - order, Δ - max degree, D - diameter

As a consequence, $\mathrm{D}, \Delta=\Omega\left(\frac{\log n}{\log \log n}\right)$

First bound

$$
O\left(n \frac{\log \log n}{\log n}\right)
$$

Greedy - find biggest isometric path or closed neighbourhood, place a cop there and run recursively on the rest of graph

Minimum distance caterpillar

Induced subgraph H st:

- H is a tree
- There is a path P in H st. distance to P from every vertex of H is $<=1$

Minimum distance caterpillar

- Caterpillars are 5-guardable
- In every graph there is caterpillar of order at least $\log (n)$

Second bound

Same as previously but using caterpillars.

Best known bound

Random graphs

We measure expected cop number for random graph $G(n, p)$.
For p sufficiently large Meyniel's bound holds for random graphs.

Graphs with diameter 2

Lower bound is tight

Family of graphs was found, for which cop number is

Open problem if it's the best lower bound.

