
Conflict-free Replicated Data Types

Wojciech Grabis

May 21, 2020

1 / 17

Introduction

Replication and consistency are essential features of any large
distributed system.

Synchronisation requires to implement some form of conflict
resolution.

CRDT allows to achieve synchronisation without any conflict
resolution, using a simple theoretical model.

2 / 17

Strong eventual consistency

Definition (Eventual Consistency)

Eventual delivery An update delivered at some correct replica is
eventually delivered to all correct replicas.
Convergence Correct replicas that have delivered the same updates
eventually reach equivalent state.
Termination All method executions terminate.

Definition (Strong eventual consistenct)

An object is Strongly Eventually Consisten if it is Eventually Consistent
and
Strong Convergence Correct replicas that have delivered the same
updates have equivalent state.

3 / 17

System model

Strong Eventual Consistency system model presented proposes two styles
of replicated objects:

State-based object

Operation-based object

4 / 17

State-based object

We define the object as a tuple (S , s0, q, u,m).

Each replica process pi has state si ∈ S called payload.

Initial state is s0

Each client can read using query method q

Updates happen through method u

Merging is done using method m

5 / 17

State-based object

Definition (State-based Causal History)

We define the object’s causal history C = [c1, . . . , cn], where ci is a
sequence of states for process pi c

0
i , . . . , c

k
i , Initially c0i = ∅. If the

kth method execution at i is

a query q: history does not change cki = ck−1i

an update uki (a): is is added to history cki = ck−1i

⋃
{uki (a)}

a merge mk
i (sk

′
i ′): then the local and remote histories are unioned

together cki = ck−1i

⋃
ck

′
i ′

6 / 17

State-based Convergent Replicated Data Type (CvRDT)

Definition (Monotonic semilattice object)

A state-based object equipped with partial order ≤, noted
(S ,≤, s0, q, u,m), that has the following properties, is called monotonic
semi-lattice:

Set S of payload values forms a semilattice ordered by ≤
Merging state s with remote state s’ computes the least upper bound
of the two states, i.e., s •m(s ′) = s t s ′

State is monotonically non-decreasing across updates, i.e.,
s ≤ s •m(s ′)

Theorem (Convergent Replicated Data Type)

Assuming eventual delivery and termination, any state-based object that
satisfies the monotonic semilattice property is SEC.

7 / 17

Operation-based object

Operation-based object is a tuple (S , s0, q, t, u,P).

Definition of S , s0, q stays the same

Update method is split into a pair (t, u), where t is a side-effect-free
prepade-update method and u is an effect-update method.

Prepare-update method is followed immediately by effect-update
method, effect-update method executes on all replicas.

Additionaly we specify a delivery relation P, called delivery
precondition, an effect-update method is enabled only if P(si , u) is
true

8 / 17

Operation-based object

Definition (Operation-based Causal History)

An object’s causal history C = {c1, . . . , cn} is defined as follows. Initially,
c0i = ∅, for all i. If the kth method execution is

a query q or a prepade update t, the casual history does not change
cki = ck−1i

an effect-update uki (a), then cki = ck−1i

⋃
{uki (a)}

Definition (Concurrent updates)

An update is said delivered at a replica, when the update is included in the
replica’s causal history. Update (t, u) happened before (t ′, u′):
(t, u) −→ (t ′, u′) ⇐⇒ u ∈ ck−1j , where t’ executes at pj in step k.
Updates are concurrent u‖u′ = u 6−→ u′ ∧ u′ 6−→ u

9 / 17

Commutative Replicated Data Type (CmRDT)

Definition (Commutativity)

Updates (t, u) and (t ′, u′) commute, iff for any reachable replica state s
where both u and u’ are enabled, u remains enabled in state s • u′ and
s • u • u′ ≡ s • u′ • u (respectively u’)

Theorem (Commutative Replicated Data Type (CmRDT))

Assuming casual delivery of updates and method termination, any
op-based object that satisfies the commutativity property for all concurrent
updates, and whose delivery precondition is satisfied by casual delivery, is
SEC.

10 / 17

State and operation based equivalency

Theorem

Any SEC state-based object can be emulated by a SEC operation-based
object of a corresponding interface.

Theorem

Any SEC operation-based object can be emulated by a SEC state-based
object of a corresponding interface.

11 / 17

Example - integer vector

We consider state-oriented object of a vector-of-integers
(Nn, [0, . . . , 0],≤n, [0, . . . , 0], value, inc ,maxn).

Vectors v , v ′ ∈ Nn are partially ordered by
v ≤n v ′ ⇐⇒ ∈ [0, . . . , n − 1] : v [i] ≤ v ′[i]

As update we treat function inc(i), which increments the payload
value at index i

Merging two vectors take the maximum for each index, so
s •maxn(s ′) = [max(s[0], s ′[0]), . . . ,max(s[n − 1], x ′[n − 1])].

12 / 17

Example - U-Set

For set an implementation using two add-only sets (A,R) can be
proposed.

Operation add(e) adds an element to set A, while operation
remove(e) adds element to set R, if it exists in set A.

For value() we return A \ R

13 / 17

Direct graph structure

We consider a graph representing a structure of web pages for web
crawlers.

Each process using will process edges of the graph, representing a web
page link.

When a crawler finds a new page, it executes addVertex and
compares the version with previous, execurint addArc and removeArc
for corresponding links.

14 / 17

15 / 17

16 / 17

Fault tolerance

SEC replica is always available for both reads and writes

Any subset of replicas of a SEC object eventually converges

There is no consensus required, so SEC object tolerates up to n − 1
crashes of replica processes.

17 / 17

	Introduction
	System model
	Operation-based object

