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1-2-3 Conjecture - Base

Edge decorations

Let G be a simple graph. Suppose that each edge e in G is assigned a real
number f(e). For each vertex v, let S(v) denote the sum of numbers
assigned to the edges incident to v, that is,

S(V) - ZXGN(V) f(XV)

where N(v) is the set of neighbors of v.
We say that f is a cool decoration of the edges of G if S(u) # S(v) for
every pair of adjacent vertices in G.

Conjecture 1 (The 1-2-3 Conjecture)

Every connected graph with at least two edges has a cool edge decoration
from the set {1,2,3}
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1-2-3 Conjecture - Base
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1-2-3 Conjecture - Base

Counterexample for set {1,2}
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1-2-3 Conjecture - versions

Problems (non-list)

name type| S function statement status
edge Cl | S(v) =| G with |[E|] > | open
(1-2-3) > xen() f(xv) | 1 has decoration

from {1,2,3}.
vertex C2 | S5(v) = |G has  deco- | open

> xen(v) F(x) ration from

{1,2,...,x(G)}.
total C3 | S(v) = f(v) + | G has decoration | open
(1-2) > oxen(y) Fvx) | from {1,2}.
weaker T1 G has decoration | proof
total from {1,2} for V
(1-2) and {1,2, 3} for E.
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It's time for some theory

Theorem (Kalkowski, 2009)

Every graph has a total cool decoration with vertices decorated by the set
{1,2} and edges decorated by the set {1,2,3}.

We can use the greedy approach to put proper values on each vertex and
edge respectively.
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1-2-3 Conjecture - versions cd.

Problems (list)

name type|l S function statement status
edge C4 | S(v) =| G with |E|] > | open
(list 1-2-3) > xen() f(xv) | 1 has decoration
from arbitrary lists
of size 3.
total C5 | S(v) = f(v) + | G has decoration | open
(list 1-2) > oxen(y) f(vx) | from any lists of
size 2.
weaker total || T3 G has decoration | proven
(list 1-2) from any lists of | by
size 2 for V and | Wong
any lists of size 3 | and
for E. Zhu
(2016)
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It's time for some theory

Surprisingly, there is a connection between these coloring problems and
Combinatorial Nullstellensatz!

Theorem (Combinatorial Nullstellensatz)

Let P be a polynomial in F[x1, 2, ..., xm| over any field F. Suppose that
there is a non-vanishing monomial in P whose degree is equal to the
degree of P. Then, for arbitrary sets A; C F, with |A;| = ki + 1, there is a
choice of elements a; € A; such that P(a1, a2, ...,am) # 0.

| A\

How to use it?

Assign a variable x, to each edge e of a graph G, and consider a
polynomial P = T[,,cg(6)(S(u) — S(v)), where S(v) is the sum of
variables assigned to the edges incident to the vertex v. We consider
Clearly, any substitution for variables xe from lists L(e) € R giving a
non-zero value of P is a cool decoration of G. Thus, Conjecture 4 will
follow if we could prove that P does not vanish over all posibilities.
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Pg(z,...,25) =
= (zg — x4 — x5) (23 + 5 — T1) (T4 — T2 — T5) X

x(z1 + 5 — z3) (21 + T4 — T2 — T3).
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It's time for some theory

A we see, Combinatorial Nullstellensatz approach led researchers to some
interesting observations and even results! We'll prove one of them.

\

Theorem (Czerwinski, Grytczuk, Zelazny)

Every planar bipartite graph has a cool vertex decoration from any lists
of size three assigned to the vertices.

Consider a polynomial

P= HquE(G),uGX,vEY(S(u) o S(V))'

with variables x, and y, for X and Y respectively. [

A\
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Proof cd.

@ All variables for X appear with minus sign in the sum (and for Y with
plus)

@ none of monomials formed by choosing one variable from each factor
(S5(u) — S(v)) will eventually vanish in P

@ A planar bipartite graph on n vertices can have at most 2n — 4 edges
(easy part), and therefore it can be oriented so that each vertex has
at most two incoming edges Inot so easy)

Known result of Alon and Tarsi on 3-choosability of planar bipartite graphs
use similar argument

v
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Other extensions of these problems

Ironic decorations

Suppose that each vertex v of a graph G is assigned a real number f(v).
Let M(v) = f(v)d, be the product of the assigned number by the degree
d, of the vertex v. We say that f is an ironic decoration of G if

M(u) # M(v) for every pair of adjacent vertices in G.

The question is if...

Every graph G has an ironic decoration by the set {1,2, ..., x(G)}.

Please note that the conjecture is trivially true for regular graphs (deg's
are equal).
Further we can pose this question in terms of lists coloring etc... etc...
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Questions
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