THE 1-2-3 CONJECTURE

Michał Stobierski

Jagiellonian University

May 28, 2020

Michał Stobierski (Jagiellonian University)

THE 1-2-3 CONJECTURE

1 What 1-2-3 conjecture is?

- 2 Versions of 1-2-3 Conjecture we'll discuss
- Proof of one of the variants
- 4 List versions of 1-2-3 Conjecture we'll discuss
- 5 Another variant proof
- It's time for some theory
 - 7 Related problems

🕨 Finish

Edge decorations

Let G be a simple graph. Suppose that each edge e in G is assigned a real number f(e). For each vertex v, let S(v) denote the sum of numbers assigned to the edges incident to v, that is,

$$S(v) = \sum_{x \in N(v)} f(xv)$$

where N(v) is the set of neighbors of v.

We say that f is a **cool decoration** of the **edges** of G if $S(u) \neq S(v)$ for every pair of adjacent vertices in G.

Conjecture 1 (The 1-2-3 Conjecture)

Every connected graph with at least two edges has a cool edge decoration from the set $\{1, 2, 3\}$

< □ > < 同 > < 三 > <

1-2-3 Conjecture - Base

< Ξ

1-2-3 Conjecture - Base

Counterexample for set $\{1,2\}$

Problems (non-list)							
name	type	S function	statement	status			
edge	C1	S(v) =	G with $ E $ >	open			
(1-2-3)		$\sum_{x \in N(v)} f(xv)$	1 has decoration				
		- ()	from $\{1, 2, 3\}$.				
vertex	C2	S(v) =	G has deco-	open			
		$\sum_{x \in N(y)} f(x)$	ration from				
			$\{1, 2,, \chi(G)\}.$				
total	C3	S(v) = f(v) +	G has decoration	open			
(1-2)		$\sum_{x \in N(v)} f(vx)$	from $\{1, 2\}$.				
weaker	T1	- ()	G has decoration	proof			
total			from $\{1,2\}$ for V				
(1-2)			and $\{1,2,3\}$ for E.				

< □ > < 凸

It's time for some theory

Theorem (Kalkowski, 2009)

Every graph has a total cool decoration with vertices decorated by the set $\{1,2\}$ and edges decorated by the set $\{1,2,3\}$.

Proof.

We can use the greedy approach to put proper values on each vertex and edge respectively.

1-2-3 Conjecture - versions cd.

Problems (list)							
name	type	S function	statement	status			
edge	C4	S(v) =	G with $ E >$	open			
(list 1-2-3)		$\sum_{x \in N(v)} f(xv)$	1 has decoration				
		- ()	from arbitrary lists				
			of size 3.				
total	C5	S(v) = f(v) +	G has decoration	open			
(list 1-2)		$\sum_{x \in N(v)} f(vx)$	from any lists of				
			size 2.				
weaker total	T3		G has decoration	proven			
(list 1-2)			from any lists of	by			
			size 2 for V and	Wong			
			any lists of size 3	and			
			for E.	Zhu			
				(2016)			

It's time for some theory

Surprisingly, there is a connection between these coloring problems and *Combinatorial Nullstellensatz*!

Theorem (Combinatorial Nullstellensatz)

Let P be a polynomial in $F[x_1, x_2, ..., x_m]$ over any field F. Suppose that there is a non-vanishing monomial in P whose degree is equal to the degree of P. Then, for arbitrary sets $A_i \subseteq F$, with $|A_i| = k_i + 1$, there is a choice of elements $a_i \in A_i$ such that $P(a_1, a_2, ..., a_m) \neq 0$.

How to use it?

Assign a variable x_e to each edge e of a graph G, and consider a polynomial $P = \prod_{uv \in E(G)} (S(u) - S(v))$, where S(v) is the sum of variables assigned to the edges incident to the vertex v. We consider Clearly, any substitution for variables xe from lists $L(e) \in \mathbb{R}$ giving a non-zero value of P is a cool decoration of G. Thus, Conjecture 4 will follow if we could prove that P does not vanish over all posibilities.

A we see, *Combinatorial Nullstellensatz* approach led researchers to some interesting observations and even results! We'll prove one of them.

Theorem (Czerwiński, Grytczuk, Żelazny)

Every **planar bipartite** *graph has a cool* **vertex** *decoration from any lists of size three assigned to the vertices.*

Proof.

Consider a polynomial

$$P = \prod_{uv \in E(G), u \in X, v \in Y} (S(u) - S(v)),$$

with variables x_u and y_v for X and Y respectively.

< ≣⇒

Observations

- All variables for X appear with minus sign in the sum (and for Y with plus)
- none of monomials formed by choosing one variable from each factor (S(u) S(v)) will eventually vanish in P
- A planar bipartite graph on n vertices can have at most 2n 4 edges (easy part), and therefore it can be oriented so that each vertex has at most two incoming edges lnot so easy)

Known result of Alon and Tarsi on 3-choosability of planar bipartite graphs use similar argument

Ironic decorations

Suppose that each vertex v of a graph G is assigned a real number f(v). Let $M(v) = f(v)d_v$ be the product of the assigned number by the degree d_v of the vertex v. We say that f is an ironic decoration of G if $M(u) \neq M(v)$ for every pair of adjacent vertices in G.

The question is if...

Conjecture

Every graph G has an ironic decoration by the set $\{1, 2, ..., \chi(G)\}$.

Please note that the conjecture is trivially true for regular graphs (deg's are equal).

Further we can pose this question in terms of lists coloring etc... etc...

< □ > < □ > < □ > < □ > < □ > < □ >

Questions

Michał Stobierski (Jagiellonian University)

イロト イヨト イヨト イヨト

Jarosław Grytczuk

"From the 1-2-3 Conjecture to the Riemann Hypothesis" March 5, 2020 arXiv:2003.02887

https://smp.uph.edu.pl/msn/38/14-18.pdf