Wegner's conjecture Colouring the square of a planar graph

Rafał Byczek

TCS, Jagiellonian University 27 may 2019

- By graph we mean a simple graph.
- *V*(*G*), *E*(*G*)
- The length of a path between two vertices is the number of edges on that path.
- We define the distance $dist_G(x, y)$ between two vertices x, y to be the length of the shortest path between them.

•
$$G^2 := (V, E^2), E^2 := E \cup \{\{x, y\} : x, y \in V, dist_G(x, y) = 2\}.$$

- $d_G(v)$ degree of vertex v in graph G.
- $\Delta = \Delta(G)$ the maximum degree of graph G.

- A vertex k-coloring of a graph G is a mapping C : V → {1, · · · , k} such that any two adjacent vertices u and v are mapped to different integers.
- The minimum k for which a coloring exists is called the chromatic number of G and is denoted by $\chi(G)$.

The Four Color Theorem

For every planar graph $G: \chi(G) \leq 4$.

Wegner's conjecture, 1977

Let G be a planar graph with maximum degree Δ . Then

$$\chi(G^2) \leqslant \begin{cases} 7, & \text{if } \Delta \leqslant 3\\ \Delta + 5, & \text{if } 4 \leqslant \Delta \leqslant 7\\ \left\lfloor \frac{3\Delta}{2} \right\rfloor + 1, & \text{if } \Delta \geqslant 8 \end{cases}$$

These bounds are best possible

graph *H*, even $\Delta \ge 8$

graph G, $\Delta \leqslant 3$

Important observation

General case

$$\Delta + 1 \leqslant \chi(G^2) \leqslant \Delta^2 + 1.$$

Planar graphs

Wegner's conjecture implies that $\chi(G^2) = O(\Delta)$.

< ∃ ►

- Every planar graph has a vertex with degree at most 5.
- $G = \{v_1, v_2, \cdots, v_n\}$, such that v_i has at most 5 neighbours in $\{v_1, v_2, \cdots, v_{i-1}\}$.
- Unfortunately, v_i has at most 5 neighbours in {v₁, v₂, · · · , v_{i-1}} DOES NOT IMPLY that v_i has at most 5(Δ − 1) vertices at distance two in {v₁, v₂, · · · , v_{i-1}}.

Theorem - Jonas, 1993

If G is a planar graph with maximum degree $\Delta \ge 5$, then $\chi(G^2) \le 9\Delta - 19$.

Proof (idea):

- order the vertices $\{v_1, \dots, v_n\}$ in such a way that each v_i has at most 5 neighbours on the left.
- greedily assign colors in that order.
- we must show that every vertex v_i has at most 9Δ 20 vertices at distance one or two in G on the left.
- assume v_i has $0 \le k \le 5$ neighbours on the left.

- assume that there is a path $v_i ba$, $a \in \{v_1, \cdots, v_{i-1}\}$
- we have two cases:
- first case: $b \in \{v_1, \cdots, v_{i-1}\}$, then we have at most $k(\Delta 1)$ such paths $v_i ba$.
- second case: b ∉ {v₁, · · · , v_{i-1}}, then there are at most Δ − k of such b. Also since b has at most 5 neighbours on his left, and one of those neighbours is v_i, b can have at most 4 neighbours on the left of v_i. So in this case we have at most 4(Δ − k) such paths v_iba.
- finally we find at most k + k(Δ − 1) + 4(Δ − k) vertices at distance on or two from v_i on the left of v_i.
- for $\Delta \ge 5$ and $0 \le k \le 5$, this number is at most $9\Delta 20$.

- T. Jonas, 1993 $\chi(G^2) \leqslant 9\Delta 19$, if $\Delta \ge 5$.
- T. Jonas, 1993 $\chi(G^2) \leq 8\Delta 22$, if $\Delta \geq 7$.
- S. Wong, 1996 $\chi(G^2) \leq 3\Delta + 5$, if $\Delta \geq 7$.
- T. Madaras, A. Marcinova, 2002 $\chi(G^2) \leq 2\Delta + 8$, if $\Delta \geq 12$.
- J. van den Heuvel, S. McGuiness, 2003 $\chi(G^2) \leq 2\Delta + 25$.
- Agnarsson, Halldorsson, 2003 $\chi(G^2) \leq \left|\frac{9\Delta}{5}\right| + 2$, if $\Delta \geq 749$.
- Molloy, Salavatipour, 2005 $\chi(G^2) \leq \left\lfloor \frac{5\Delta}{3} \right\rfloor + 78$.

S. Hartke - 2016, C. Thomassen - 2018

If G is a subcubic planar graph, then $\chi(G^2) \leqslant 7$.

What we know until now? - special cases

A planar graph is said to be outerplanar if it has a plane embedding such that all vertices lie on the boundary of the unbounded face.

Theorem - K. Lih, W. Wang, 2006

If G is an outerplanar graph with maximum degree $\Delta \ge 3$, then $\chi(G^2) \le \Delta + 2$. Moreover, $\chi(G^2) = \Delta + 1$, if $\Delta \ge 7$.

Rafał Byczek

27 may 2019 13 / 17

The girth of a graph is the length of a shortest cycle contained in the graph.

Theorem 1 - Cranston, Kim

If G is planar, $\Delta(G) = 3$, and girth ≥ 7 , then $\chi(G^2) \leq 7$.

Theorem 2 - Cranston, Kim

If G is planar, $\Delta(G) = 3$, and girth ≥ 9 , then $\chi(G^2) \leq 6$.

Maximal average degree of a graph G

$$mad(G) := \max_{H \subset G} \frac{2|E(H)|}{|V(H)|}$$

Theorem - Cranston, Erman

Let G be a graph with maximum degree $\Delta = 4$. Then if $mad(G) < \frac{16}{7}, \frac{22}{9}, \frac{18}{7}, \frac{14}{5}$, respectively, then G^2 is 5, 6, 7, 8-colorable, respectively.

Theorem - Havet, Heuvel, Reed

The square of every planar graph G of maximum degree Δ has chromatic number at most $(1 + o(1))\frac{3}{2}\Delta$.

This is the end! Thank you!

э.