Wegner's conjecture
 Colouring the square of a planar graph

Rafał Byczek

TCS, Jagiellonian University
27 may 2019

Introduction - Graphs

- By graph we mean a simple graph.
- $V(G), E(G)$
- The length of a path between two vertices is the number of edges on that path.
- We define the distance $\operatorname{dist}_{G}(x, y)$ between two vertices x, y to be the length of the shortest path between them.
- $G^{2}:=\left(V, E^{2}\right), E^{2}:=E \cup\left\{\{x, y\}: x, y \in V, \operatorname{dist}_{G}(x, y)=2\right\}$.
- $d_{G}(v)$ - degree of vertex v in graph G.
- $\Delta=\Delta(G)$ - the maximum degree of graph G.

Introduction - Coloring

- A vertex k-coloring of a graph G is a mapping $C: V \longrightarrow\{1, \cdots, k\}$ such that any two adjacent vertices u and v are mapped to different integers.
- The minimum k for which a coloring exists is called the chromatic number of G and is denoted by $\chi(G)$.

The Four Color Theorem

The Four Color Theorem
For every planar graph $G: \chi(G) \leqslant 4$.

Wegner's conjecture

Wegner's conjecture, 1977

Let G be a planar graph with maximum degree Δ. Then

$$
\chi\left(G^{2}\right) \leqslant \begin{cases}7, & \text { if } \Delta \leqslant 3 \\ \Delta+5, & \text { if } 4 \leqslant \Delta \leqslant 7 \\ \left\lfloor\frac{3 \Delta}{2}\right\rfloor+1, & \text { if } \Delta \geqslant 8\end{cases}
$$

These bounds are best possible

graph $G, \Delta \leqslant 3$

graph H, even $\Delta \geqslant 8$

Important observation

General case

$\Delta+1 \leqslant \chi\left(G^{2}\right) \leqslant \Delta^{2}+1$.

Planar graphs

Wegner's conjecture implies that $\chi\left(G^{2}\right)=O(\Delta)$.

Easy greedy algorithms don't work

- Every planar graph has a vertex with degree at most 5 .
- $G=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$, such that v_{i} has at most 5 neighbours in $\left\{v_{1}, v_{2}, \cdots, v_{i-1}\right\}$.
- Unfortunately, v_{i} has at most 5 neighbours in $\left\{v_{1}, v_{2}, \cdots, v_{i-1}\right\}$ DOES NOT IMPLY that v_{i} has at most $5(\Delta-1)$ vertices at distance two in $\left\{v_{1}, v_{2}, \cdots, v_{i-1}\right\}$.

First linear in Δ upper bound

Theorem - Jonas, 1993

If G is a planar graph with maximum degree $\Delta \geqslant 5$, then $\chi\left(G^{2}\right) \leqslant 9 \Delta-19$.

Proof (idea):

- order the vertices $\left\{v_{1}, \cdots, v_{n}\right\}$ in such a way that each v_{i} has at most 5 neighbours on the left.
- greedily assign colors in that order.
- we must show that every vertex v_{i} has at most $9 \Delta-20$ vertices at distance one or two in G on the left.
- assume v_{i} has $0 \leqslant k \leqslant 5$ neighbours on the left.

First linear in Δ upper bound

- assume that there is a path $v_{i} b a, a \in\left\{v_{1}, \cdots, v_{i-1}\right\}$
- we have two cases:
- first case: $b \in\left\{v_{1}, \cdots, v_{i-1}\right\}$, then we have at most $k(\Delta-1)$ such paths $v_{i} b a$.
- second case: $b \notin\left\{v_{1}, \cdots, v_{i-1}\right\}$, then there are at most $\Delta-k$ of such b. Also since b has at most 5 neighbours on his left, and one of those neighbours is v_{i}, b can have at most 4 neighbours on the left of v_{i}. So in this case we have at most $4(\Delta-k)$ such paths $v_{i} b a$.
- finally we find at most $k+k(\Delta-1)+4(\Delta-k)$ vertices at distance on or two from v_{i} on the left of v_{i}.
- for $\Delta \geqslant 5$ and $0 \leqslant k \leqslant 5$, this number is at most $9 \Delta-20$.

What we know until now? - general case

- T. Jonas, 1993- $\chi\left(G^{2}\right) \leqslant 9 \Delta-19$, if $\Delta \geqslant 5$.
- T. Jonas, 1993- $\chi\left(G^{2}\right) \leqslant 8 \Delta-22$, if $\Delta \geqslant 7$.
- S. Wong, 1996- $\chi\left(G^{2}\right) \leqslant 3 \Delta+5$, if $\Delta \geqslant 7$.
- T. Madaras, A. Marcinova, 2002- $\chi\left(G^{2}\right) \leqslant 2 \Delta+8$, if $\Delta \geqslant 12$.
- J. van den Heuvel, S. McGuiness, $2003-\chi\left(G^{2}\right) \leqslant 2 \Delta+25$.
- Agnarsson, Halldorsson, $2003-\chi\left(G^{2}\right) \leqslant\left\lfloor\frac{9 \Delta}{5}\right\rfloor+2$, if $\Delta \geqslant 749$.
- Molloy, Salavatipour, $2005-\chi\left(G^{2}\right) \leqslant\left\lfloor\frac{5 \Delta}{3}\right\rfloor+78$.

What we know until now? - special cases

S. Hartke - 2016, C. Thomassen - 2018

If G is a subcubic planar graph, then $\chi\left(G^{2}\right) \leqslant 7$.

What we know until now? - special cases

A planar graph is said to be outerplanar if it has a plane embedding such that all vertices lie on the boundary of the unbounded face.

Theorem - K. Lih, W. Wang, 2006

If G is an outerplanar graph with maximum degree $\Delta \geqslant 3$, then $\chi\left(G^{2}\right) \leqslant \Delta+2$. Moreover, $\chi\left(G^{2}\right)=\Delta+1$, if $\Delta \geqslant 7$.

What we know until now? - bounded girth

The girth of a graph is the length of a shortest cycle contained in the graph.

Theorem 1 - Cranston, Kim If G is planar, $\Delta(G)=3$, and girth $\geqslant 7$, then $\chi\left(G^{2}\right) \leqslant 7$.

Theorem 2 - Cranston, Kim

If G is planar, $\Delta(G)=3$, and girth $\geqslant 9$, then $\chi\left(G^{2}\right) \leqslant 6$.

What we know until now? - bounded $\operatorname{mad}(G)$

Maximal average degree of a graph G

$$
\operatorname{mad}(G):=\max _{H \subset G} \frac{2|E(H)|}{|V(H)|}
$$

Theorem - Cranston, Erman

Let G be a graph with maximum degree $\Delta=4$. Then if $\operatorname{mad}(G)<\frac{16}{7}, \frac{22}{9}, \frac{18}{7}, \frac{14}{5}$, respectively, then G^{2} is $5,6,7,8$-colorable, respectively.

Asymptotically true!

Theorem - Havet, Heuvel, Reed

The square of every planar graph G of maximum degree Δ has chromatic number at most $(1+o(1)) \frac{3}{2} \Delta$.

This is the end!
Thank you!

