Codes from zero-divisor graphs

Raja L'hamri

Mohammed V University in Rabat, Morocco

22 may 2020

Combinatorial Optimization Seminar

Jagiellonian university, Krakow, Poland.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

work under progress

Joint work under progress in collaboration with Khalid Abdelmoumen, Driss Bennis and Fouad Taraza.

< 回 > < 三 > < 三 > -

Plan

- 2 Basics on codes from graphs
- Application on zero-divisor graphs
- Extended zero-divisor graphs
- 6 Main References

4 3 4 3 4 3 4

< A >

2 Basics on codes from graphs

3 Application on zero-divisor graphs

4 Extended zero-divisor graphs

・ 同 ト ・ ヨ ト ・ ヨ ト

Basics on codes from graphs Application on zero-divisor graphs Extended zero-divisor graphs Main Bafarrages

Definition

Definition

A linear (binary) code is a linear subspace C of the vector space $(\mathbb{F}_2)^n$, where \mathbb{F}_2 is the finite field with 2 elements and n is a positive integer.

- The integer *n* is called the length of *C*.
- The dimension of *C* is its rank.
- An element of a linear code is called a codeword.

伺 ト イヨト イヨト

Basics on codes from graphs Application on zero-divisor graphs Extended zero-divisor graphs

Definition

Definition

A linear (binary) code is a linear subspace C of the vector space $(\mathbb{F}_2)^n$, where \mathbb{F}_2 is the finite field with 2 elements and n is a positive integer.

- The integer *n* is called the length of *C*.
- The dimension of *C* is its rank.
- An element of a linear code is called a codeword.

Basics on codes from graphs Application on zero-divisor graphs Extended zero-divisor graphs Main Defenses

Definition

Definition

A linear (binary) code is a linear subspace C of the vector space $(\mathbb{F}_2)^n$, where \mathbb{F}_2 is the finite field with 2 elements and n is a positive integer.

• The integer *n* is called the length of *C*.

- The dimension of *C* is its rank.
- An element of a linear code is called a codeword.

< 回 > < 三 > < 三 > -

Basics on codes from graphs Application on zero-divisor graphs Extended zero-divisor graphs Main Defenses

Definition

Definition

A linear (binary) code is a linear subspace C of the vector space $(\mathbb{F}_2)^n$, where \mathbb{F}_2 is the finite field with 2 elements and n is a positive integer.

- The integer *n* is called the length of *C*.
- The dimension of *C* is its rank.
- An element of a linear code is called a codeword.

< 回 > < 三 > < 三 > -

Basics on codes from graphs Application on zero-divisor graphs Extended zero-divisor graphs Main Defenses

Definition

Definition

A linear (binary) code is a linear subspace C of the vector space $(\mathbb{F}_2)^n$, where \mathbb{F}_2 is the finite field with 2 elements and n is a positive integer.

- The integer *n* is called the length of *C*.
- The dimension of *C* is its rank.
- An element of a linear code is called a codeword.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Construction

Let C be a linear code of length n and rank k. There is a matrix G of type $k \times n$ such that

$$v \in C \iff \exists v' \in (\mathbb{F}_2)^k, v'G = v.$$

In other words, C = Im(G).

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Construction

Let C be a linear code of length n and rank k.

There is a matrix G of type $k \times n$ such that

$$v \in C \iff \exists v' \in (\mathbb{F}_2)^k, v'G = v.$$

In other words, C = Im(G).

< 回 > < 三 > < 三 > -

Basics on codes from graphs Application on zero-divisor graphs Extended zero-divisor graphs

Minimal distance

Definition

The Hamming distance or simply the distance between two codewords m_1 and m_2 , denoted by $d(m_1, m_2)$, is the number of elements in which they differ.

• The weight of a codeword *m*, denoted by *wt*(*m*), is the number of nonzero coordinates in *m*.

• Thus
$$d(m_1, m_2) = wt(m_1 - m_2)$$
.

伺 ト イヨト イヨト

Basics on linear codes Basics on codes from graphs Application on zero-divisor graphs

Extended zero-divisor graphs

Minimal distance

Definition

The Hamming distance or simply the distance between two codewords m_1 and m_2 , denoted by $d(m_1, m_2)$, is the number of elements in which they differ.

- The weight of a codeword *m*, denoted by *wt*(*m*), is the number of nonzero coordinates in *m*.
- Thus $d(m_1, m_2) = wt(m_1 m_2)$.

くぼう くほう くほう

Basics on linear codes Basics on codes from graphs

Application on zero-divisor graphs Extended zero-divisor graphs

Minimal distance

Definition

The Hamming distance or simply the distance between two codewords m_1 and m_2 , denoted by $d(m_1, m_2)$, is the number of elements in which they differ.

• The weight of a codeword *m*, denoted by *wt*(*m*), is the number of nonzero coordinates in *m*.

• Thus
$$d(m_1, m_2) = wt(m_1 - m_2)$$
.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Minimal distance

Definition

The minimal distance of a linear code C, denoted by d(C), is the minimum distance between distinct codewords.

Example

Consider the linaear code

- $C = \{(0, 0, 0, 0), (1, 1, 1, 1)(0, 1, 0, 1)(1, 0, 1, 0)\},$ is of :
 - length 4.
 - rank 2.
 - minimal distance 2.

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・

Minimal distance

Definition

The minimal distance of a linear code C, denoted by d(C), is the minimum distance between distinct codewords.

Example

Consider the linaear code

$$\textbf{C} = \{(0,0,0,0), (1,1,1,1)(0,1,0,1)(1,0,1,0)\}, \text{ is of }:$$

Iength 4.

• rank 2

• minimal distance 2.

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・

Minimal distance

Definition

The minimal distance of a linear code C, denoted by d(C), is the minimum distance between distinct codewords.

Example

Consider the linaear code

- $\textbf{C} = \{(0,0,0,0), (1,1,1,1)(0,1,0,1)(1,0,1,0)\}, \text{ is of }:$
 - length 4.
 - rank 2.
 - minimal distance 2.

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・

Minimal distance

Definition

The minimal distance of a linear code C, denoted by d(C), is the minimum distance between distinct codewords.

Example

Consider the linaear code

- $\textbf{C} = \{(0,0,0,0), (1,1,1,1)(0,1,0,1)(1,0,1,0)\}, \text{ is of }:$
 - Iength 4.
 - rank 2.
 - minimal distance 2.

イロト イポト イヨト イヨト

Correction and detection of errors

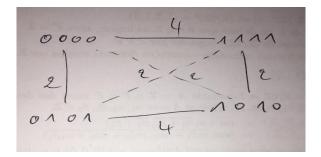
Theorem

A linear code of minimum distance d can detect d - 1 errors and can correct up to $t = \left[\frac{d-1}{2}\right]$ errors.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Example

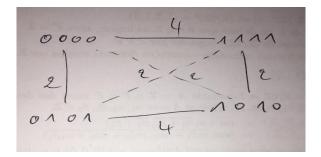
Consider the linear code $C = \{(0, 0, 0, 0), (1, 1, 1, 1)(0, 1, 0, 1)(1, 0, 1, 0)\}$



・ 同 ト ・ ヨ ト ・ ヨ ト

Example

Consider the linear code $C = \{(0, 0, 0, 0), (1, 1, 1, 1)(0, 1, 0, 1)(1, 0, 1, 0)\}$



・ 同 ト ・ ヨ ト ・ ヨ ト

3 Application on zero-divisor graphs

4 Extended zero-divisor graphs

・ 同 ト ・ ヨ ト ・ ヨ ト

P. Dankelmann, J. D. Key and B. G. Rodrigues. Codes from incidence matrices of graphs. Designs, Des. Codes Cryptogr. **68** :373–393, 2013.

< 回 > < 三 > < 三 >

Codes from graph

An edge-cut of a connected graph Γ is a set $S \subset E$ such that $\Gamma \setminus S = (V, E \setminus S)$ is disconnected. The edge-connectivity $\lambda(\Gamma)$ is the cardinality of the minimal edge-cut.

Theorem (Dankelmann, Key and Rodrigues, 2013)

Let $\Gamma = (V, E)$ be a connected graph. Then, the binary code $C_2(G)$ where G is the incidence matrix for Γ is of :

- length |E|,
- rank |V| 1,

• minimum Hamming distance $\lambda(\Gamma)$.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Codes from graph

An edge-cut of a connected graph Γ is a set $S \subset E$ such that $\Gamma \setminus S = (V, E \setminus S)$ is disconnected. The edge-connectivity $\lambda(\Gamma)$ is the cardinality of the minimal edge-cut.

Theorem (Dankelmann, Key and Rodrigues, 2013)

Let $\Gamma = (V, E)$ be a connected graph. Then, the binary code $C_2(G)$ where G is the incidence matrix for Γ is of :

- length |E|,
- rank |V| 1,

• minimum Hamming distance $\lambda(\Gamma)$.

イロン 不得 とくほう くほう 二日

Codes from graph

An edge-cut of a connected graph Γ is a set $S \subset E$ such that $\Gamma \setminus S = (V, E \setminus S)$ is disconnected. The edge-connectivity $\lambda(\Gamma)$ is the cardinality of the minimal edge-cut.

Theorem (Dankelmann, Key and Rodrigues, 2013)

Let $\Gamma = (V, E)$ be a connected graph. Then, the binary code $C_2(G)$ where G is the incidence matrix for Γ is of :

- length |E|,
- rank |V| 1,

• minimum Hamming distance $\lambda(\Gamma)$.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Codes from graph

An edge-cut of a connected graph Γ is a set $S \subset E$ such that $\Gamma \setminus S = (V, E \setminus S)$ is disconnected. The edge-connectivity $\lambda(\Gamma)$ is the cardinality of the minimal edge-cut.

Theorem (Dankelmann, Key and Rodrigues, 2013)

Let $\Gamma = (V, E)$ be a connected graph. Then, the binary code $C_2(G)$ where G is the incidence matrix for Γ is of :

- length |E|,
- rank |V| − 1,
- minimum Hamming distance $\lambda(\Gamma)$.

イロン 不得 とくほう くほう 二日

super λ graph

Let Γ be a connected graph. We denote by $\delta(\Gamma)$, the minimum degree of the vertices of Γ .

Definition (Dankelmann, Key and Rodrigues, 2013)

If $\lambda(\Gamma) = \delta(\Gamma)$ and, in addition, the only edge sets of cardinality $\lambda(\Gamma)$ whose removal disconnects G are the sets of edges incident with a vertex of degree $\delta(\Gamma)$, then Γ is called super- λ .

直 ト イヨ ト イヨト

super λ graph

Let Γ be a connected graph. We denote by $\delta(\Gamma),$ the minimum degree of the vertices of $\Gamma.$

Definition (Dankelmann, Key and Rodrigues, 2013)

If $\lambda(\Gamma) = \delta(\Gamma)$ and, in addition, the only edge sets of cardinality $\lambda(\Gamma)$ whose removal disconnects G are the sets of edges incident with a vertex of degree $\delta(\Gamma)$, then Γ is called super- λ .

伺 ト イヨ ト イヨ ト

super λ graph

Let Γ be a connected graph. We denote by $\delta(\Gamma),$ the minimum degree of the vertices of $\Gamma.$

Definition (Dankelmann, Key and Rodrigues, 2013)

If $\lambda(\Gamma) = \delta(\Gamma)$ and, in addition, the only edge sets of cardinality $\lambda(\Gamma)$ whose removal disconnects G are the sets of edges incident with a vertex of degree $\delta(\Gamma)$, then Γ is called super- λ .

ヘロ ト ヘ 同 ト ヘ 三 ト ー

Codes from super λ graph

Theorem (P.Dankelmann, J.D.Key, B.G.Rodrigues, 2013)

Let $\Gamma = (V, E)$ be a connected graph. If Γ is super- λ then, the binary code $C_2(G)$, where G is the incidence matrix for Γ , is of :

- length |E|,
- rank |V| 1,
- minimum Hamming distance $\delta(\Gamma)$,

and the codewords of the minimum weight are the rows of G of weight $\delta(\Gamma)$.

・ロト ・ 一下・ ・ ヨト・

Codes from super λ graph

Theorem (P.Dankelmann, J.D.Key, B.G.Rodrigues, 2013)

Let $\Gamma = (V, E)$ be a connected graph. If Γ is super- λ then, the binary code $C_2(G)$, where G is the incidence matrix for Γ , is of :

- length |E|,
- rank |V| 1,
- minimum Hamming distance $\delta(\Gamma)$,

and the codewords of the minimum weight are the rows of G of weight $\delta(\Gamma)$.

Codes from super λ graph

Theorem (P.Dankelmann, J.D.Key, B.G.Rodrigues, 2013)

Let $\Gamma = (V, E)$ be a connected graph. If Γ is super- λ then, the binary code $C_2(G)$, where G is the incidence matrix for Γ , is of :

- length |E|,
- rank |V| − 1,
- minimum Hamming distance $\delta(\Gamma)$,

and the codewords of the minimum weight are the rows of G of weight $\delta(\Gamma)$.

Codes from super λ graph

Theorem (P.Dankelmann, J.D.Key, B.G.Rodrigues, 2013)

Let $\Gamma = (V, E)$ be a connected graph. If Γ is super- λ then, the binary code $C_2(G)$, where G is the incidence matrix for Γ , is of :

- length |E|,
- rank |V| − 1,
- minimum Hamming distance $\delta(\Gamma)$,

and the codewords of the minimum weight are the rows of G of weight $\delta(\Gamma)$.

Application on zero-divisor graphs

4 Extended zero-divisor graphs

5 Main References

< 回 > < 回 > < 回 >

Zero-divisor graphs

Definition (Anderson and Livingston, 1998

The zero-divisor graph of ring R denoted by $\Gamma(R)$, is the simple graph whose set of vertices consists of all nonzero zero divisors of R such that two distinct vertices x and y are joined by an edge if xy = 0.

It is well-known that the zero-divisor graph of a commutative ring has the following properties :

- It is a connected graph.
- Its diameter is at most 3.
- When it contains a cycle, its girth is 3 or 4.

A B b A B b

Zero-divisor graphs

Definition (Anderson and Livingston, 1998)

The zero-divisor graph of ring R denoted by $\Gamma(R)$, is the simple graph whose set of vertices consists of all nonzero zero divisors of R such that two distinct vertices x and y are joined by an edge if xy = 0.

It is well-known that the zero-divisor graph of a commutative ring has the following properties :

- It is a connected graph.
- Its diameter is at most 3.
- When it contains a cycle, its girth is 3 or 4.

Zero-divisor graphs

Definition (Anderson and Livingston, 1998)

The zero-divisor graph of ring R denoted by $\Gamma(R)$, is the simple graph whose set of vertices consists of all nonzero zero divisors of R such that two distinct vertices x and y are joined by an edge if xy = 0.

It is well-known that the zero-divisor graph of a commutative ring has the following properties :

- It is a connected graph.
- Its diameter is at most 3.
- When it contains a cycle, its girth is 3 or 4.

Zero-divisor graphs

Definition (Anderson and Livingston, 1998)

The zero-divisor graph of ring R denoted by $\Gamma(R)$, is the simple graph whose set of vertices consists of all nonzero zero divisors of R such that two distinct vertices x and y are joined by an edge if xy = 0.

It is well-known that the zero-divisor graph of a commutative ring has the following properties :

- It is a connected graph.
- Its diameter is at most 3.
- When it contains a cycle, its girth is 3 or 4.

Zero-divisor graphs

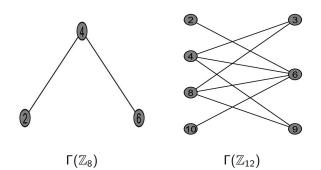
Definition (Anderson and Livingston, 1998)

The zero-divisor graph of ring R denoted by $\Gamma(R)$, is the simple graph whose set of vertices consists of all nonzero zero divisors of R such that two distinct vertices x and y are joined by an edge if xy = 0.

It is well-known that the zero-divisor graph of a commutative ring has the following properties :

- It is a connected graph.
- Its diameter is at most 3.
- When it contains a cycle, its girth is 3 or 4.

Examples



イロン イ団 と イヨン イヨン

2

$\Gamma(\mathbb{Z}_n)$ are super lambda graphs

Theorem

Let n be a nonzero integer such that $n = p_1^{\alpha_1} \dots p_m^{\alpha_m}$ with p_i is a prime integer and $\alpha_i \ge 1$ for all $i \in \{1, ..., m\}$. Then, $\Gamma(\mathbb{Z}_n)$ is a super λ graph with $\lambda = p_r - 1$ such that $p_r = \min\{p_i | i \in \{1, ..., m\}\}$.

くぼう くほう くほう

Codes from $\Gamma(\mathbb{Z}_n)$

Corllary

Let n be a nonzero integer such that $n = p_1^{\alpha_1} \dots p_m^{\alpha_m}$ with p_i is a prime integer and $\alpha_i \ge 1$ for all $i \in \{1, ..., m\}$. Let G_n be the incidence matrix of $\Gamma(\mathbb{Z}_n)$. Then, $C_2(G_n)$ is of :

- length $\frac{1}{2} \sum_{x \in Z(\mathbb{Z}_n)^*} |Ann(x) \setminus \{x\}|$,
- $rank |Z(\mathbb{Z}_n)^*| 1$,
- minimum Hamming distance $p_r 1$ with

 $p_r = min\{p_i | i \in \{1, ..., m\}\}.$

and the codewords of the minimum weight are the rows of G_n of weight $\delta(\Gamma)$.

・ロト ・ 一下・ ・ ヨト・

Codes from $\Gamma(\mathbb{Z}_n)$

Corllary

Let n be a nonzero integer such that $n = p_1^{\alpha_1} \dots p_m^{\alpha_m}$ with p_i is a prime integer and $\alpha_i \ge 1$ for all $i \in \{1, ..., m\}$. Let G_n be the incidence matrix of $\Gamma(\mathbb{Z}_n)$. Then, $C_2(G_n)$ is of :

- length $rac{1}{2} \sum_{x \in Z(\mathbb{Z}_n)^*} |Ann(x) \setminus \{x\}|$,
- rank $|Z(\mathbb{Z}_n)^*|-1$,
- minimum Hamming distance $p_r 1$ with

and the codewords of the minimum weight are the rows of G_n of weight $\delta(\Gamma)$.

・ロト ・ 一下・ ・ ヨト・

Codes from $\Gamma(\mathbb{Z}_n)$

Corllary

Let n be a nonzero integer such that $n = p_1^{\alpha_1} \dots p_m^{\alpha_m}$ with p_i is a prime integer and $\alpha_i \ge 1$ for all $i \in \{1, ..., m\}$. Let G_n be the incidence matrix of $\Gamma(\mathbb{Z}_n)$. Then, $C_2(G_n)$ is of :

- length $rac{1}{2} \sum_{x \in Z(\mathbb{Z}_n)^*} |Ann(x) \setminus \{x\}|$,
- rank $|Z(\mathbb{Z}_n)^*|-1$,
- minimum Hamming distance $p_r 1$ with $p_r = min\{p_r | i \in \{1, \dots, m\}\}$

and the codewords of the minimum weight are the rows of G_n of weight $\delta(\Gamma)$.

・ロト ・ 一下・ ・ ヨト・

Codes from $\Gamma(\mathbb{Z}_n)$

Corllary

Let n be a nonzero integer such that $n = p_1^{\alpha_1} \dots p_m^{\alpha_m}$ with p_i is a prime integer and $\alpha_i \ge 1$ for all $i \in \{1, ..., m\}$. Let G_n be the incidence matrix of $\Gamma(\mathbb{Z}_n)$. Then, $C_2(G_n)$ is of :

- length $rac{1}{2} \sum_{x \in Z(\mathbb{Z}_n)^*} |Ann(x) \setminus \{x\}|$,
- rank $|Z(\mathbb{Z}_n)^*|-1$,
- minimum Hamming distance $p_r 1$ with $p_r = min\{p_i | i \in \{1, ..., m\}\}.$

and the codewords of the minimum weight are the rows of G_n of weight $\delta(\Gamma)$.

・ロト ・ 一下・ ・ ヨト・

Codes from $\Gamma(\mathbb{Z}_n)$

Corllary

Let n be a nonzero integer such that $n = p_1^{\alpha_1} \dots p_m^{\alpha_m}$ with p_i is a prime integer and $\alpha_i \ge 1$ for all $i \in \{1, ..., m\}$. Let G_n be the incidence matrix of $\Gamma(\mathbb{Z}_n)$. Then, $C_2(G_n)$ is of :

- length $rac{1}{2} \sum_{x \in Z(\mathbb{Z}_n)^*} |Ann(x) \setminus \{x\}|$,
- rank $|Z(\mathbb{Z}_n)^*|-1$,
- minimum Hamming distance $p_r 1$ with $p_r = min\{p_i | i \in \{1, ..., m\}\}.$

and the codewords of the minimum weight are the rows of G_n of weight $\delta(\Gamma)$.

・ロト ・ 一下・ ・ ヨト・

Codes from $\Gamma(\mathbb{Z}_n)$

Corllary

Let n be a nonzero integer such that $n = p_1^{\alpha_1} \dots p_m^{\alpha_m}$ with p_i is a prime integer and $\alpha_i \ge 1$ for all $i \in \{1, ..., m\}$. Let G_n be the incidence matrix of $\Gamma(\mathbb{Z}_n)$. Then, $C_2(G_n)$ is of :

- length $rac{1}{2} \sum_{x \in Z(\mathbb{Z}_n)^*} |Ann(x) \setminus \{x\}|$,
- rank $|Z(\mathbb{Z}_n)^*|-1$,
- minimum Hamming distance $p_r 1$ with $p_r = min\{p_i | i \in \{1, ..., m\}\}.$

and the codewords of the minimum weight are the rows of G_n of weight $\delta(\Gamma)$.

・ロト ・ 一下・ ・ ヨト・

2 Basics on codes from graphs

3 Application on zero-divisor graphs

Extended zero-divisor graphs

5 Main References

Definition (Bennis, Mikram and Taraza, 2016)

The extended zero-divisor graph, denoted by $\overline{\Gamma}(R)$, is the simple graph such that :

- Its vertex set consists of all non-zero zero-divisors of R.
- Two distinct vertices x and y are joined by an edge if and only if there exist two non negative integers n and m such that xⁿy^m = 0 with xⁿ ≠ 0 and y^m ≠ 0.

直 ト イヨ ト イヨト

Definition (Bennis, Mikram and Taraza, 2016)

The extended zero-divisor graph, denoted by $\overline{\Gamma}(R)$, is the simple graph such that :

• Its vertex set consists of all non-zero zero-divisors of R.

 Two distinct vertices x and y are joined by an edge if and only if there exist two non negative integers n and m such that xⁿy^m = 0 with xⁿ ≠ 0 and y^m ≠ 0.

伺 ト イヨ ト イヨ ト

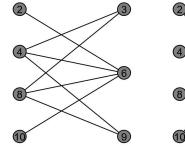
Definition (Bennis, Mikram and Taraza, 2016)

The extended zero-divisor graph, denoted by $\overline{\Gamma}(R)$, is the simple graph such that :

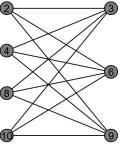
- Its vertex set consists of all non-zero zero-divisors of R.
- Two distinct vertices x and y are joined by an edge if and only if there exist two non negative integers n and m such that xⁿy^m = 0 with xⁿ ≠ 0 and y^m ≠ 0.

伺 ト イヨト イヨト

Example



 $\Gamma(\mathbb{Z}_{12})$



 $\overline{\Gamma}(\mathbb{Z}_{12})$

イロン イヨン イヨン イヨン

2

Proposition

Let p be a prime integer and $\alpha > 2$ an integer. The binary code $C_2(\overline{G}_{p^{\alpha}})$ is of :

• length
$$\frac{(p^{\alpha-1}-1)(p^{\alpha-1}-2)}{2}$$
,

• rank p
$$^{\alpha-1}-2$$
,

• minimum Hamming distance $p^{\alpha-1} - 2$,

and the minimum words are the rows of $G_{p,\alpha}$ of weight $p^{\alpha-1}-2$.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Proposition

Let p be a prime integer and $\alpha > 2$ an integer. The binary code $C_2(\overline{G}_{p^{\alpha}})$ is of :

• length
$$\frac{(p^{\alpha-1}-1)(p^{\alpha-1}-2)}{2}$$
,

• rank $p^{\alpha-1}-2$,

• minimum Hamming distance $p^{\alpha-1} - 2$,

and the minimum words are the rows of $G_{p,\alpha}$ of weight $p^{\alpha-1}-2$.

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・

Proposition

Let p be a prime integer and $\alpha > 2$ an integer. The binary code $C_2(\overline{G}_{p^{\alpha}})$ is of :

• length
$$\frac{(p^{\alpha-1}-1)(p^{\alpha-1}-2)}{2}$$
,

• rank p
$$^{lpha-1}-2$$
,

• minimum Hamming distance $p^{\alpha-1} - 2$,

and the minimum words are the rows of $G_{p,\alpha}$ of weight $p^{\alpha-1}-2$.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Proposition

Let p be a prime integer and $\alpha > 2$ an integer. The binary code $C_2(\overline{G}_{p^{\alpha}})$ is of :

• length
$$\frac{(p^{\alpha-1}-1)(p^{\alpha-1}-2)}{2}$$
,

• rank p
$$^{lpha-1}-2$$
,

• minimum Hamming distance $p^{\alpha-1}-2$,

and the minimum words are the rows of ${\sf G}_{{\sf p},lpha}$ of weight ${\sf p}^{lpha-1}-2$.

・ロト ・ 同ト ・ ヨト ・ ヨト

Proposition

Let p be a prime integer and $\alpha > 2$ an integer. The binary code $C_2(\overline{G}_{p^{\alpha}})$ is of :

• length
$$\frac{(p^{\alpha-1}-1)(p^{\alpha-1}-2)}{2}$$
,

• rank p
$$^{lpha-1}-2$$
,

• minimum Hamming distance $p^{\alpha-1}-2$,

and the minimum words are the rows of $G_{p,\alpha}$ of weight $p^{\alpha-1}-2$.

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・

p	α	parameters of $\mathit{C}_2(\mathit{G}_{p^lpha}):[n,k,d]$	parameters of $C_2(\overline{G}_{p^{lpha}}):[n,k,d]$
2	3	[2,2,1]	[3,2,2]
2	4	[7,6,1]	[21,6,6]
2	5	[23,14,1]	[105,14,14]
2	6	[61,30,1]	[465,30,30]
3	3	[13,7,2]	[28,7,7]
3	4	[64,25,2]	[325,25,25]
5	3	[86,23,4]	[276,23,23]

2 Basics on codes from graphs

3 Application on zero-divisor graphs

4 Extended zero-divisor graphs

イロト 不得 トイヨト イヨト

Main Reference

- D. Bennis, J. Mikram and F. Taraza. On the extended zero divisor graph of commutative rings. Turk. J. Math. **40** :376–388, 2016.
- P. Dankelmann, J. D. Key and B. G. Rodrigues. Codes from incidence matrices of graphs. Designs, Des. Codes Cryptogr. 68 :373–393, 2013.

A B M A B M

Main Reference

- D. Bennis, J. Mikram and F. Taraza. On the extended zero divisor graph of commutative rings. Turk. J. Math. **40** :376–388, 2016.
- P. Dankelmann, J. D. Key and B. G. Rodrigues. Codes from incidence matrices of graphs. Designs, Des. Codes Cryptogr. 68 :373–393, 2013.

A B M A B M

Thank you for your attention !

イロン イロン イヨン イヨン

Ξ.