Reconfiguring Independent Sets On Interval Graphs

Marcin Briański, Stefan Felsner, Jędrzej Hodor and Piotr Micek

What do we reconfigure?

What do we reconfigure?

What do we reconfigure?

What do we reconfigure?

In the graph theory?

In the graph theory?

In the graph theory?

(Kempe change)

In the graph theory?

(Kempe change)

In the graph theory?

(Kempe change)
independent sets

Reconfiguration graph

Reconfiguration graph

$V(G)$	$E(G)$
configurations	configurability

Reconfiguration graph

$V(G)$	$E(G)$
configurations	configurability
Rubic's cube configuration cars configuration DNA sequence	one side moved one car is moved straigth difference by one nucleotide

Reconfiguration graph

$V(G)$	$E(G)$		
configurations	configurability		
Rubic's cube configuration cars configuration	one side moved one car is moved straigth DNA sequence coloring		difference by one nucleotide
:---			
Kempe change			

Reconfiguration graph

$V(G)$	$E(G)$
configurations	configurability
Rubic's cube configuration	one side moved
cars configuration	one car is moved straigth
DNA sequence	difference by one nucleotide
coloring	Kempe change
independent set	$I \ominus J=\{u, v\}$ and $\{u, v\} \in E$

Reconfiguration graph

$V(G)$	$E(G)$
configurations	configurability
Rubic's cube configuration	one side moved
cars configuration	one car is moved straigth
DNA sequence	difference by one nucleotide
coloring	Kempe change
\rightarrow independent set	$I \ominus J=\{u, v\}$ and $\{u, v\} \in E$

Reconfiguration graph

$V(G)$	$E(G)$
configurations	configurability
Rubic's cube configuration	one side moved
cars configuration	one car is moved straigth
DNA sequence	difference by one nucleotide
coloring	Kempe change
\rightarrow independent set	$I \ominus J=\{u, v\}$ and $\{u, v\} \in E$

Questions?

$$
I, J \in V(G)
$$

Reconfiguration graph

$V(G)$	$E(G)$
configurations	configurability
Rubic's cube configuration	one side moved
cars configuration	one car is moved straigth
DNA sequence	difference by one nucleotide
coloring	Kempe change
\rightarrow independent set	$I \ominus J=\{u, v\}$ and $\{u, v\} \in E$

Questions?

$$
I, J \in V(G)
$$

- Does there exist a path from I to J in G?

Reconfiguration graph

$V(G)$	$E(G)$
configurations	configurability
Rubic's cube configuration	one side moved
cars configuration	one car is moved straigth
DNA sequence	difference by one nucleotide
coloring	Kempe change
\rightarrow independent set	$I \ominus J=\{u, v\}$ and $\{u, v\} \in E$

Questions?

$$
I, J \in V(G)
$$

- Does there exist a path from I to J in G?
- What is the diameter of G ?

Reconfiguration graph

$V(G)$	$E(G)$
configurations	configurability
Rubic's cube configuration	one side moved
cars configuration	one car is moved straigth
DNA sequence	difference by one nucleotide
coloring	Kempe change
\rightarrow independent set	$I \ominus J=\{u, v\}$ and $\{u, v\} \in E$

Questions?

$$
I, J \in V(G)
$$

- Does there exist a path from I to J in G?
- What is the diameter of G ?
- Is G connected?

Reconfiguration graph

$V(G)$	$E(G)$
configurations	configurability
Rubic's cube configuration	one side moved
cars configuration	one car is moved straigth
DNA sequence	difference by one nucleotide
coloring	Kempe change
\rightarrow independent set	$I \ominus J=\{u, v\}$ and $\{u, v\} \in E$

Questions?

$$
I, J \in V(G)
$$

- Does there exist a path from I to J in G?
- What is the diameter of G ?
- Is G connected?

Reconfiguring independent sets

Reconfiguring independent sets

Reconfiguring independent sets

Reconfiguring independent sets

Reconfiguring independent sets

Reconfiguring independent sets

Reconfiguring independent sets

Reconfiguring independent sets

Reconfiguring independent sets

Reconfiguring independent sets

Reconfiguring independent sets

Reconfiguring independent sets

Reconfiguring independent sets

How can it be not possible?

How can it be not possible?

How can it be not possible?

How can it be not possible?

How can it be not possible?

Brute-force?

Brute-force?

G - graph
$|V(G)|=n$
k - size of independent sets
$R_{k}(G)$ - reconfiguration graph

Brute-force?

$G-$ graph
$|V(G)|=n$
$k-$ size of independent sets
$R_{k}(G)$ - reconfiguration graph

$$
\left|V\left(R_{k}(G)\right)\right| \leqslant\binom{ n}{k} \sim \Theta\left(n^{k}\right)
$$

Brute-force?

$$
\begin{aligned}
& G \text { - graph } \\
& |V(G)|=n \\
& k-\text { size of independent sets }
\end{aligned}
$$

$R_{k}(G)$ - reconfiguration graph

$$
\left|V\left(R_{k}(G)\right)\right| \leqslant\binom{ n}{k} \sim \Theta\left(n^{k}\right)
$$

DFS? Dijkstra?

Brute-force?

G - graph
$|V(G)|=n$
k - size of independent sets
$R_{k}(G)$ - reconfiguration graph

$$
\left|V\left(R_{k}(G)\right)\right| \leqslant\binom{ n}{k} \sim \Theta\left(n^{k}\right)
$$

Can we do better?

Can we do better?

TS-Reachability
In: G graph, I, J independent sets in G Out: Is there a path from I to J in $R_{|I|}(G)$?

Polynomial	Hard	Open

Polynomial	Hard	Open
tree ['11] cograph ['12] claw-free ['14] bipartite permutation ['15] bipartite distance heridiatary ['15] interval [Bonamy, Bousquet '18]		

Polynomial	Hard	Open
tree ['11]	planar of degree 3 ['05] bounded tw,pw, bw ['14]	
cograph ['12] claw-free ['14] bipartite ['19]		
bipartite permutation ['15] split (chordal, perfect) ['19] bipartite distance heridiatary ['15] H-free for H not a subdivided claw ['20]		

Polynomial	Hard	Open
tree ['11]	planar of degree 3 ['05] bounded tw,pw, bw ['14]	permutation distance heridiatary bipartite ['19]
claw-free ['14] bipartite permutation ['15] bipartite distance heridiatary ['15]	split (chordal, perfect) ['19] H-free for H not a subdivided claw ['20]	

Polynomial	Hard	Open
tree ['11]	planar of degree $3[' 05]$ bounded tw,pw, bw ['14]	permutation distance heridiatary
cograph ['12] claw-free ['14] bipartite permutation ['15] bipartite distance heridiatary ['15]	split (chordal, perfect) ['19] H-free for H not a subdivided claw ['20]	
interval [Bonamy, Bousquet '18]	incomparability ['21]	

Polynomial	Hard	Open
tree ['11]	planar of degree 3 ['05] bounded tw,pw, bw ['14]	permutation distance heridiatary
cograph ['12] bipartite ['19]	outerplanar	
bipartite permutation ['15] (chordal, perfect) ['19] bipartite distance heridiatary ['15]	H-free for H not a subdivided claw ['20]	
interval [Bonamy, Bousquet '18]	incomparability ['21]	

Interval graphs: leftmost independent set

Interval graphs: leftmost independent set

Interval graphs: leftmost independent set

- if two independent sets can reach the leftmost, then concatenate paths

Interval graphs: leftmost independent set

- if two independent sets can reach the leftmost, then concatenate paths
- what if not?

Interval graphs: extreme set

Interval graphs: extreme set
\mathcal{C} - connected component of $R_{k}(G)$

Interval graphs: extreme set

\mathcal{C} - connected component of $R_{k}(G)$
I - independent set, then $I=\left\{I_{1}, I_{2}, \ldots, I_{k}\right\}$ in the natural order

Interval graphs: extreme set

\mathcal{C} - connected component of $R_{k}(G)$
I - independent set, then $I=\left\{I_{1}, I_{2}, \ldots, I_{k}\right\}$ in the natural order

$$
\operatorname{ex}_{j}(\mathcal{C})=\min _{r}\left\{I_{j} \mid I \in \mathcal{C}\right\}
$$

Interval graphs: extreme set

\mathcal{C} - connected component of $R_{k}(G)$
I - independent set, then $I=\left\{I_{1}, I_{2}, \ldots, I_{k}\right\}$ in the natural order

$$
\operatorname{ex}_{j}(\mathcal{C})=\min _{r}\left\{I_{j} \mid I \in \mathcal{C}\right\}
$$

$$
\operatorname{EX}(\mathcal{C})=\left\{\operatorname{ex}_{1}(\mathcal{C}), \operatorname{ex}_{2}(\mathcal{C}), \ldots, \operatorname{ex}_{k}(\mathcal{C})\right\}
$$

Interval graphs: extreme set

\mathcal{C} - connected component of $R_{k}(G)$
I - independent set, then $I=\left\{I_{1}, I_{2}, \ldots, I_{k}\right\}$ in the natural order

$$
\operatorname{ex}_{j}(\mathcal{C})=\min _{r}\left\{I_{j} \mid I \in \mathcal{C}\right\}
$$

$$
\operatorname{EX}(\mathcal{C})=\left\{\operatorname{ex}_{1}(\mathcal{C}), \operatorname{ex}_{2}(\mathcal{C}), \ldots, \operatorname{ex}_{k}(\mathcal{C})\right\}
$$

ALGO: for I finds $A(I)=\operatorname{EX}(\mathcal{C})$, where $I \in \mathcal{C}$

For I, J check if $A(I)==A(J)$

Interval graphs: extreme set

\mathcal{C} - connected component of $R_{k}(G)$
I - independent set, then $I=\left\{I_{1}, I_{2}, \ldots, I_{k}\right\}$ in the natural order

$$
\operatorname{ex}_{j}(\mathcal{C})=\min _{r}\left\{I_{j} \mid I \in \mathcal{C}\right\}
$$

$$
\operatorname{EX}(\mathcal{C})=\left\{\operatorname{ex}_{1}(\mathcal{C}), \operatorname{ex}_{2}(\mathcal{C}), \ldots, \operatorname{ex}_{k}(\mathcal{C})\right\}
$$

"try to go left as far as you can"
ALGO: for I finds $A(I)=\operatorname{EX}(\mathcal{C})$, where $I \in \mathcal{C}$

For I, J check if $A(I)==A(J)$

Algo: $k=2$

Algo: $k=2$

Algo: $k=2$

Algo: $k=2$

Algo: $k=2$

Algo: $k=2$

Algo: $k=2$

Algo: $k=2$

$\operatorname{PushLeft}(l), \operatorname{PushRight}(r), \operatorname{PushLeft}(l), \ldots$

Algo: $k=2$

$\operatorname{PushLeft}(l), \operatorname{PushRight}(r), \operatorname{PushLeft}(l), \ldots, \operatorname{PushRight}(r)=\operatorname{PushApart}(r, l)$

Algo: $k=2$

$\operatorname{PushLeft}(l), \operatorname{PushRight}(r), \operatorname{PushLeft}(l), \ldots, \operatorname{PushRight}(r)=\operatorname{PushApart}(r, l)$ $\operatorname{PushLeft}(l), \operatorname{PushRight}(r), \operatorname{PushLeft}(l), \ldots, \operatorname{PushLeft}(r)=\operatorname{Alqo}(\{r, l\})$

Algo: $k=2$

[^0]
General algo

If there is any progress in extremal positions: DO IT AGAIN

General algo

If there is any progress in extremal positions: DO IT AGAIN

- Single PushApart makes $\mathcal{O}(n)$ operations

General algo

If there is any progress in extremal positions: DO IT AGAIN

- Single PushApart makes $\mathcal{O}(n)$ operations
- Single round takes $\mathcal{O}(k \cdot n)$ operations

General algo

If there is any progress in extremal positions: DO IT AGAIN

- Single PushApart makes $\mathcal{O}(n)$ operations
- Single round takes $\mathcal{O}(k \cdot n)$ operations
- For each token there are only $2 \cdot n$ possible extremal positions (left, right)

General algo

If there is any progress in extremal positions: DO IT AGAIN

- Single PushApart makes $\mathcal{O}(n)$ operations
- Single round takes $\mathcal{O}(k \cdot n)$ operations
- For each token there are only $2 \cdot n$ possible extremal positions (left, right)
- A progress can be made only $\mathcal{O}(k \cdot n)$ times

General algo

If there is any progress in extremal positions: DO IT AGAIN

- Single PushApart makes $\mathcal{O}(n)$ operations
- Single round takes $\mathcal{O}(k \cdot n)$ operations
- For each token there are only $2 \cdot n$ possible extremal positions (left, right)
- A progress can be made only $\mathcal{O}(k \cdot n)$ times
- This gives $\mathcal{O}\left(k^{2} n^{2}\right)$ operations

General algo

If there is any progress in extremal positions: DO IT AGAIN

- Single PushApart makes $\mathcal{O}(n)$ operations
- Single round takes $\mathcal{O}(k \cdot n)$ operations
- For each token there are only $2 \cdot n$ possible extremal positions (left, right)
- A progress can be made only $\mathcal{O}(k \cdot n)$ times
- This gives $\mathcal{O}\left(k^{2} n^{2}\right)$ operations

General algo

If there is any progress in extremal positions: DO IT AGAIN

- Single PushApart makes $\mathcal{O}(n)$ operations
- Single round takes $\mathcal{O}(k \cdot n)$ operations
- For each token there are only $2 \cdot n$ possible extremal positions (left, right)
- A progress can be made only $\mathcal{O}(k \cdot n)$ times
- This gives $\mathcal{O}\left(k^{2} n^{2}\right)$ operations
- Bound $\mathcal{O}\left(k n^{2}\right)$ for the path length!

Lower bound?

Lower bound?

$$
\begin{aligned}
& k=3 \\
& n=\mathcal{O}(m+k)
\end{aligned}
$$

Lower bound?

$$
\begin{aligned}
& k=3 \\
& n=\mathcal{O}(m+k)
\end{aligned}
$$

Lower bound?

$$
\begin{aligned}
& k=3 \\
& n=\mathcal{O}(m+k)
\end{aligned}
$$

Lower bound?

$$
\begin{aligned}
& k=3 \\
& n=\mathcal{O}(m+k)
\end{aligned}
$$

Lower bound?

$$
\begin{aligned}
& k=3 \\
& n=\mathcal{O}(m+k)
\end{aligned}
$$

Lower bound?

$$
\begin{aligned}
& k=3 \\
& n=\mathcal{O}(m+k)
\end{aligned}
$$

Lower bound?

$$
\begin{aligned}
& k=3 \\
& n=\mathcal{O}(m+k)
\end{aligned}
$$

Lower bound?

$$
\begin{aligned}
& k=3 \\
& n=\mathcal{O}(m+k)
\end{aligned}
$$

Lower bound?

$$
\begin{array}{lr}
k=3 & \sim k \cdot(k-2) \cdot m \\
n=\mathcal{O}(m+k) &
\end{array}
$$

Lower bound?

$$
\begin{aligned}
& k=3 \\
& n=\mathcal{O}(m+k)
\end{aligned}
$$

$\sim k \cdot(k-2) \cdot m \sim \Omega\left(k^{2} n\right)$

Lower bound?

$$
\begin{aligned}
& k=3 \\
& n=\mathcal{O}(m+k)
\end{aligned}
$$

$$
\sim k \cdot(k-2) \cdot m \sim \Omega\left(k^{2} n\right) \quad ? \quad \mathcal{O}\left(k n^{2}\right)
$$

Lower bound?

$$
\begin{aligned}
& k=3 \\
& n=\mathcal{O}(m+k)
\end{aligned}
$$

$$
\sim k \cdot(k-2) \cdot m \sim \Omega\left(k^{2} n\right) \quad ? \quad \mathcal{O}\left(k n^{2}\right)
$$

General graph case (diameter problem)

General graph case (diameter problem)

$$
\Omega(n)
$$

$\operatorname{diam}\left(R_{k}(G)\right)$
$\mathcal{O}\left(n^{k}\right)$

General graph case (diameter problem)

$$
\Omega(n)
$$

$\operatorname{diam}\left(R_{k}(G)\right)$

$$
\mathcal{O}\left(n^{k}\right)
$$

[Hlembotskyi '21]

- $k=2$: linear algorithm (no bound on diameter)

General graph case (diameter problem)

$$
\Omega(n)
$$

$\operatorname{diam}\left(R_{k}(G)\right)$

$$
\mathcal{O}\left(n^{k}\right)
$$

[Hlembotskyi '21]

- $k=2$: linear algorithm (no bound on diameter)
- $k \geqslant 4$, even: $\Omega\left(\left(\frac{n}{k}\right)^{\frac{k}{2}}\right)$

General graph case (diameter problem)

$$
\Omega(n)
$$

[Hlembotskyi '21]
$\operatorname{diam}\left(R_{k}(G)\right)$

- $k=2$: linear algorithm (no bound on diameter)
- $k \geqslant 4$, even: $\Omega\left(\left(\frac{n}{k}\right)^{\frac{k}{2}}\right)$

[^1]
General graph case (diameter problem)

$$
\Omega(n)
$$

$\operatorname{diam}\left(R_{k}(G)\right)$

$$
\mathcal{O}\left(n^{k}\right)
$$

[Hlembotskyi '21]

- $k=2$: linear algorithm (no bound on diameter)
- $k \geqslant 4$, even: $\Omega\left(\left(\frac{n}{k}\right)^{\frac{k}{2}}\right)$

Open problems:

- linear bound for $k=2$

General graph case (diameter problem)

$$
\Omega(n)
$$

$\operatorname{diam}\left(R_{k}(G)\right)$

$$
\mathcal{O}\left(n^{k}\right)
$$

[Hlembotskyi '21]

- $k=2$: linear algorithm (no bound on diameter)
- $k \geqslant 4$, even: $\Omega\left(\left(\frac{n}{k}\right)^{\frac{k}{2}}\right)$

Open problems:

- linear bound for $k=2$
- $k=3$?

General graph case (diameter problem)

$$
\Omega(n)
$$

$\operatorname{diam}\left(R_{k}(G)\right)$
[Hlembotskyi '21]

- $k=2$: linear algorithm (no bound on diameter)
- $k \geqslant 4$, even: $\Omega\left(\left(\frac{n}{k}\right)^{\frac{k}{2}}\right)$

Open problems:

- linear bound for $k=2$
- $k=3$?
- is this result tight?

Incomparability graphs

Incomparability graphs

$$
P=(X, \prec)-\text { poset }
$$

Incomparability graphs

$$
\begin{aligned}
& P=(X, \prec)-\text { poset } \\
& V(\operatorname{Inc}(P))=X
\end{aligned}
$$

Incomparability graphs

$$
\begin{aligned}
& P=(X, \prec)-\text { poset } \\
& V(\operatorname{Inc}(P))=X \\
& E(\operatorname{Inc}(P))=\text { incomparable pairs of vertices }
\end{aligned}
$$

Incomparability graphs

$$
\begin{aligned}
& P=(X, \prec)-\text { poset } \\
& V(\operatorname{Inc}(P))=X \\
& E(\operatorname{Inc}(P))=\text { incomparable pairs of vertices }
\end{aligned}
$$

Example: Interval orders

Incomparability graphs

$$
\begin{aligned}
& P=(X, \prec)-\text { poset } \\
& V(\operatorname{Inc}(P))=X \\
& E(\operatorname{Inc}(P))=\text { incomparable pairs of vertices }
\end{aligned}
$$

Example: Interval orders

Incomparability graphs

$$
\begin{aligned}
& P=(X, \prec)-\text { poset } \\
& V(\operatorname{Inc}(P))=X \\
& E(\operatorname{Inc}(P))=\text { incomparable pairs of vertices }
\end{aligned}
$$

Example: Interval orders

$$
u \prec v \Leftrightarrow r(u)<\ell(v)
$$

Incomparability graphs

$$
\begin{aligned}
& P=(X, \prec)-\text { poset } \\
& V(\operatorname{Inc}(P))=X \\
& E(\operatorname{Inc}(P))=\text { incomparable pairs of vertices }
\end{aligned}
$$

Example: Interval orders

$$
u \prec v \Leftrightarrow r(u)<\ell(v)
$$

u, v incomparable $\Leftrightarrow u, v$ intersect

Incomparability graphs

$$
\begin{aligned}
& P=(X, \prec)-\text { poset } \\
& V(\operatorname{Inc}(P))=X \\
& E(\operatorname{Inc}(P))=\text { incomparable pairs of vertices }
\end{aligned}
$$

Example: Interval orders

$$
\begin{aligned}
& u \prec v \Leftrightarrow r(u)<\ell(v) \\
& u, v \text { incomparable } \Leftrightarrow u, v \text { intersect } \\
& \operatorname{Inc}((V(G), \prec))=G
\end{aligned}
$$

Incomparability graphs

$$
P=(X, \prec)-\text { poset }
$$

Note: chains are independent sets in $\operatorname{Inc}(P)$
$V(\operatorname{Inc}(P))=X$
$E(\operatorname{Inc}(P))=$ incomparable pairs of vertices

Example: Interval orders

$$
\begin{aligned}
& u \prec v \Leftrightarrow r(u)<\ell(v) \\
& u, v \text { incomparable } \Leftrightarrow u, v \text { intersect } \\
& \operatorname{Inc}((V(G), \prec))=G
\end{aligned}
$$

H-Word Reachability reduction
H - digraph $\quad a=a_{1} a_{2} \ldots a_{j} \in V(H)^{*}$

$$
\begin{aligned}
& H \text { - digraph } \quad a=a_{1} a_{2} \ldots a_{j} \in V(H)^{*} \\
& a \text { is an } \underline{H \text {-word if } a_{i} a_{i+1} \in E(H) \text { for all } i}
\end{aligned}
$$

In: H-words a, b
Out: Can a be transformed to b changing one letter at a time with all intermediate H-words?

H-Word Reachability reduction

$$
\begin{aligned}
& H \text { - digraph } \quad a=a_{1} a_{2} \ldots a_{j} \in V(H)^{*} \\
& a \text { is an } \underline{H \text {-word if } a_{i} a_{i+1} \in E(H) \text { for all } i}
\end{aligned}
$$

In: H-words a, b
Out: Can a be transformed to b changing one letter at a time
with all intermediate H-words?
[Wrochna '18] There exists H such that H-Word Reachability is PSPACE-complete

H-Word Reachability reduction

$$
\begin{aligned}
& H \text { - digraph } \quad a=a_{1} a_{2} \ldots a_{j} \in V(H)^{*} \\
& a \text { is an } \underline{H \text {-word if } a_{i} a_{i+1} \in E(H) \text { for all } i}
\end{aligned}
$$

In: H-words a, b
Out: Can a be transformed to b changing one letter at a time
with all intermediate H-words?
[Wrochna '18] There exists H such that H-Word Reachability is PSPACE-complete

H-Word Reachability reduction

H - digraph
$a=a_{1} a_{2} \ldots a_{j} \in V(H)^{*}$
a is an $\underline{H \text {-word if } a_{i} a_{i+1} \in E(H) \text { for all } i}$
In: H-words a, b
Out: Can a be transformed to b changing one letter at a time
with all intermediate H-words?
[Wrochna '18] There exists H such that H-Word Reachability is PSPACE-complete

$$
\begin{aligned}
& H \text { - digraph } \quad a=a_{1} a_{2} \ldots a_{j} \in V(H)^{*} \\
& a \text { is an } \underline{H \text {-word if } a_{i} a_{i+1} \in E(H) \text { for all } i}
\end{aligned}
$$

In: H-words a, b
Out: Can a be transformed to b changing one letter at a time
with all intermediate H-words?
[Wrochna '18] There exists H such that H-Word Reachability is PSPACE-complete

$$
\begin{aligned}
& H \text { - digraph } \quad a=a_{1} a_{2} \ldots a_{j} \in V(H)^{*} \\
& a \text { is an } \underline{H \text {-word if } a_{i} a_{i+1} \in E(H) \text { for all } i}
\end{aligned}
$$

In: H-words a, b
Out: Can a be transformed to b changing one letter at a time with all intermediate H-words?
[Wrochna '18] There exists H such that H-Word Reachability is PSPACE-complete

$$
\begin{aligned}
A & :=\left\{\left(a_{1}, 1\right),\left(a_{2}, 2\right), \ldots,\left(a_{n}, n\right)\right\} \\
B & :=\left\{\left(b_{1}, 1\right),\left(b_{2}, 2\right), \ldots,\left(b_{n}, n\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
& H \text { - digraph } \quad a=a_{1} a_{2} \ldots a_{j} \in V(H)^{*} \\
& a \text { is an } \underline{H \text {-word if } a_{i} a_{i+1} \in E(H) \text { for all } i}
\end{aligned}
$$

In: H-words a, b
Out: Can a be transformed to b changing one letter at a time with all intermediate H-words?
[Wrochna '18] There exists H such that H-Word Reachability is PSPACE-complete

$A:=\left\{\left(a_{1}, 1\right),\left(a_{2}, 2\right), \ldots,\left(a_{n}, n\right)\right\}$
$B:=\left\{\left(b_{1}, 1\right),\left(b_{2}, 2\right), \ldots,\left(b_{n}, n\right)\right\}$
independent sets in $\operatorname{Inc}(P)$

$$
\begin{aligned}
& H \text { - digraph } \quad a=a_{1} a_{2} \ldots a_{j} \in V(H)^{*} \\
& a \text { is an } \underline{H \text {-word if } a_{i} a_{i+1} \in E(H) \text { for all } i}
\end{aligned}
$$

In: H-words a, b
Out: Can a be transformed to b changing one letter at a time with all intermediate H-words?
[Wrochna '18] There exists H such that H-Word Reachability is PSPACE-complete

$$
n=|a|=|b| \text { copies of } V(H)
$$ cliques in $\operatorname{Inc}(P)$

$$
\begin{aligned}
& A:=\left\{\left(a_{1}, 1\right),\left(a_{2}, 2\right), \ldots,\left(a_{n}, n\right)\right\} \\
& B:=\left\{\left(b_{1}, 1\right),\left(b_{2}, 2\right), \ldots,\left(b_{n}, n\right)\right\}
\end{aligned}
$$

independent sets in $\operatorname{Inc}(P)$

$$
H \text { - digraph } \quad a=a_{1} a_{2} \ldots a_{j} \in V(H)^{*}
$$

$$
a \text { is an } \underline{H \text {-word }} \text { if } a_{i} a_{i+1} \in E(H) \text { for all } i
$$

In: H-words a, b
Out: Can a be transformed to b changing one letter at a time with all intermediate H-words?
[Wrochna '18] There exists H such that H-Word Reachability is PSPACE-complete

$$
\begin{aligned}
& A:=\left\{\left(a_{1}, 1\right),\left(a_{2}, 2\right), \ldots,\left(a_{n}, n\right)\right\} \\
& B:=\left\{\left(b_{1}, 1\right),\left(b_{2}, 2\right), \ldots,\left(b_{n}, n\right)\right\}
\end{aligned}
$$

independent sets in $\operatorname{Inc}(P)$
intermediate words are H-words

$$
\Leftrightarrow
$$

intermediate sets are independent sets

[^0]: $\operatorname{PushLeft}(l), \operatorname{PushRight}(r), \operatorname{PushLeft}(l), \ldots, \operatorname{PushRight}(r)=\operatorname{PushApart}(r, l)$ $\operatorname{PushLeft}(l), \operatorname{PushRight}(r), \operatorname{PushLeft}(l), \ldots, \operatorname{PushLeft}(r)=\quad \operatorname{Alqo}(\{r, l\})$

[^1]: Open problems:

