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coloring Kempe change

independent set I 	 J = {u, v} and {u, v} ∈ E

Questions? I, J ∈ V (G)

Does there exist a path from I to J in G?

What is the diameter of G?

Is G connected? TS-Reachability
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Out: Is there a path from I to J in R|I|(G)?
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bipartite permutation [’15]
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planar of degree 3 [’05]
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bipartite [’19]
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outerplanar

incomparability [’21]interval [Bonamy, Bousquet ’18]

cograph [’12]

dynamic algorithm
no bound on the path length
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k = 3

if two independent sets can reach the leftmost, then concatenate paths

what if not?
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ALGO: for I finds A(I) = EX(C), where I ∈ C

For I, J check if A(I) == A(J)

”try to go left as far as you can”
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The length of generated path is O(n)
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General algo

PushApart PushApart PushApart PushApart

If there is any progress in extremal positions: DO IT AGAIN

Single PushApart makes O(n) operations
Single round takes O(k · n) operations
For each token there are only 2 · n possible extremal positions (left, right)
A progress can be made only O(k · n) times
This gives O(k2n2) operations

Better order of PushApart and more careful analysis

Bound O(kn2) for the path length!
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Lower bound?

︸ ︷︷ ︸

k = 3
n = O(m+ k)

m

∼ k · (k − 2) ·m ∼ Ω(k2n) O(kn2)?
tight when k ∼ n
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Ω(n)

O(nk)

diam(Rk(G))
k = 2: linear algorithm (no bound on diameter)

[Hlembotskyi ’21]

k  4, even: Ω
((
n
k

) k
2
)

Open problems:

linear bound for k = 2

k = 3?

is this result tight?
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Incomparability graphs

P = (X,≺)− poset

V (Inc(P )) = X

E(Inc(P )) = incomparable pairs of vertices

Example: Interval orders

G

u ≺ v ⇔ r(u) < `(v)

u, v incomparable ⇔ u, v intersect

Inc((V (G),≺)) = G

Note: chains are independent sets in Inc(P )
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H - digraph a = a1a2 . . . aj ∈ V (H)∗

a is an H-word if aiai+1 ∈ E(H) for all i
In: H-words a, b
Out: Can a be transformed to b changing one letter at a time

with all intermediate H-words?

[Wrochna ’18] There exists H such that H-Word Reachability is PSPACE-complete

n = |a| = |b| copies of V (H)

E(H) E(H) E(H) E(H)

1 2 3 . . . n

A := {(a1, 1), (a2, 2), . . . , (an, n)}
B := {(b1, 1), (b2, 2), . . . , (bn, n)}
independent sets in Inc(P )

P cliques in Inc(P )

intermediate words are H-words
⇔

intermediate sets are independent sets

In: H-words a, b
Out: Can a be transformed to b changing one letter at a time

with all intermediate H-words?


